540 likes | 571 Views
Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame. C* + N. E(r). v’= 0. C + N. v”=3. 2. 1. 0. r . Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame. C* + N. E(r). v’= 0. C + N. v”=3. 2. 1. 0. r .
E N D
Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame C* + N E(r) v’= 0 C + N v”=3 2 1 0 r
Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame C* + N E(r) v’= 0 C + N v”=3 2 1 0 r
Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame C* + N The classical picture is that the electronic transition occurs so quickly that the nuclei cannot adjust and so the nuclei are at the turning point of the vibrational state of the final electronic state E(r) v’= 0 C + N v”=3 2 1 0 r
’”2 = e + n Harry Kroto 2004
’”2 = e + n ne= ne Harry Kroto 2004
’”2 = e + n ne= ne ’” = e’n’(e + n)n”e” Harry Kroto 2004
’”2 = e + n ne= ne ’” = e’n’(e + n)n”e” = e’n’en”e” + e’n’nn”e” Harry Kroto 2004
’”2 = e + n ne= ne ’” = e’n’(e + n)n”e” = e’n’en”e” + e’n’nn”e” = e’ee”n’n” + e’e”n’nn” Harry Kroto 2004
’”2 = e + n ne= ne ’” = e’n’(e + n)n”e” = e’n’en”e” + e’n’nn”e” = e’ee”nn” + e’e”n’nn” = Men’n” + e’e”n’nn”
’”2 = e + n ne= ne ’” = e’n’(e + n)n”e” = e’n’en”e” + e’n’nn”e” = e’ee”nn” + e’e”n’nn” = Men’n” + e’e”n’nn” = Men’n”
’”2 = e + n ne= ne ’” = e’n’(e + n)n”e” = e’n’en”e” + e’n’nn”e” = e’ee”nn” + e’e”n’nn” = Men’n” + e’e”n’nn” = Men’n” n’n”overlap of the vibrational wavefunctions
’”2 = e + n ne= ne ’” = e’n’(e + n)n”e” = e’n’en”e” + e’n’nn”e” = e’ee”nn” + e’e”n’nn” = Men’n” + e’e”n’nn” = Men’n” n’n”overlap of the vibrational wavefunctions as e’e” = 0 as orthogonal wavefunctions
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) v’= 0 A + B v”=3 2 1 0 r
A + B* E(r) v’= 0 A + B v”=3 2 1 0 r
Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame C* + N E(r) v’= 0 C + N v”=3 2 1 0 r
The problem of how to make H2 in Space E(r) H + H r H2
The problem of how to make H2 in Space E(r) H + H r H2
Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame C* + N E(r) v’= 0 C + N v”=3 2 1 0 r
Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame C* + N E(r) v’= 0 C + N v”=3 2 1 0 r
A + B* E(r) A + B r
A + B* E(r) A + B r
A + B* E(r) A + B o’o” ~ ≠ 0 r
A + B* E(r) A + B r
A + B* E(r) v’= 0 A + B v”=3 2 1 0 r
V 6 5 4 3 2 1 0
– Orthonormal wavefunctions + + ← – ∞ + ∞ → + ∞ ∫ ψv=0ψv =0dτ = 0 - ∞
V 6 5 4 3 2 1 0
Orthonormal wavefunctions – + ← – ∞ + ∞ → + ∞ ∫ ψv=1ψv =0dτ = 0 - ∞