1 / 25

Analysis of Parallel-Server Systems with Dynamic Affinity Scheduling and Load Balancing

Mark S. Squillante Mathematical Sciences Department April 18, 2004. Analysis of Parallel-Server Systems with Dynamic Affinity Scheduling and Load Balancing. Problem Motivation. Cache Affinity [SquillanteLazowska90]. Problem Motivation. Cache Affinity [SquillanteLazowska90].

altessa
Download Presentation

Analysis of Parallel-Server Systems with Dynamic Affinity Scheduling and Load Balancing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mark S. Squillante Mathematical Sciences Department April 18, 2004 Analysis of Parallel-Server Systems with Dynamic Affinity Scheduling and Load Balancing

  2. Problem Motivation Cache Affinity [SquillanteLazowska90]

  3. Problem Motivation Cache Affinity [SquillanteLazowska90] Key Points of Fundamental Tradeoff • Customers can be served on any server of a parallel-server queueing system • Each customer is served most efficiently on one the servers • Load imbalance among queues occurs due to stochastic properties of system

  4. General Overview • Optimal Dynamic Threshold Scheduling Policy • Fluid limits • Diffusion limits • Analysis of Dynamic Threshold Scheduling • Consider generalized threshold scheduling policy • Matrix-analytic analysis and fix-point solution, asymptotically exact • Numerical experiments • Optimal settings of dynamic scheduling policy thresholds • Stochastic Derivative-Free Optimization

  5. () 1  () P Scheduling Policy

  6. () 1  ()  () P Scheduling Model

  7. (1-ps) … … …       0,1,0 1,0,1 Tru,1,0 Tru+1,0,1 Tsu,1,0 Tsu+1,0,1 prg r r r … … … pr (1-pr)g       s (1-ps) … … …       0,0,0 1,0,0 Tru,0,0 Tru+1,0,0 Tsu,0,0 Tsu+1,0,0 +r +r +r m m m (1-pr) Mathematical Analysis State Vector ( i, j, v ): • i: total number of customers waiting or receiving service at the processor of interest • j: number of customers in the process of being migrated to the processor of interest • v: K-bit vector denoting customer type of up to the first K customers at the processor

  8. (1-ps) … … …       0,1,0 1,0,1 Tru,1,0 Tru+1,0,1 Tsu,1,0 Tsu+1,0,1 prg r r r … … … pr (1-pr)g       s (1-ps) … … …       0,0,0 1,0,0 Tru,0,0 Tru+1,0,0 Tsu,0,0 Tsu+1,0,0 +r +r +r m m m (1-pr) Mathematical Analysis

  9. (1-ps) … … …       0,1,0 1,0,1 Tru,1,0 Tru+1,0,1 Tsu,1,0 Tsu+1,0,1 prg r r r … … … pr (1-pr)g       s (1-ps) … … …       0,0,0 1,0,0 Tru,0,0 Tru+1,0,0 Tsu,0,0 Tsu+1,0,0 +r +r +r m m m (1-pr) Mathematical Analysis

  10. (1-ps) … … …       0,1,0 1,0,1 Tru,1,0 Tru+1,0,1 Tsu,1,0 Tsu+1,0,1 prg r r r … … … pr (1-pr)g       s (1-ps) … … …       0,0,0 1,0,0 Tru,0,0 Tru+1,0,0 Tsu,0,0 Tsu+1,0,0 +r +r +r m m m (1-pr) Mathematical Analysis

  11. (1-ps) … … …       0,1,0 1,0,1 Tru,1,0 Tru+1,0,1 Tsu,1,0 Tsu+1,0,1 prg r r r … … … pr (1-pr)g       s (1-ps) … … …       0,0,0 1,0,0 Tru,0,0 Tru+1,0,0 Tsu,0,0 Tsu+1,0,0 +r +r +r m m m (1-pr) Mathematical Analysis

  12. (1-ps) … … …       0,1,0 1,0,1 Tru,1,0 Tru+1,0,1 Tsu,1,0 Tsu+1,0,1 prg r r r … … … pr (1-pr)g       s (1-ps) … … …       0,0,0 1,0,0 Tru,0,0 Tru+1,0,0 Tsu,0,0 Tsu+1,0,0 +r +r +r m m m (1-pr) Mathematical Analysis

  13. (1-ps) … … …       0,1,0 1,0,1 Tru,1,0 Tru+1,0,1 Tsu,1,0 Tsu+1,0,1 prg r r r … … … pr (1-pr)g       s (1-ps) … … …       0,0,0 1,0,0 Tru,0,0 Tru+1,0,0 Tsu,0,0 Tsu+1,0,0 +r +r +r m m m (1-pr) Mathematical Analysis Final Solution Obtained via Fix-Point Iteration • Initialize (ps, s, pr, r) • Compute stationary probability vector in terms of (ps, s, pr, r) • Compute new values of (ps, s, pr, r) in terms of stationary vector • Goto 2 until differences between iteration values are arbitrarily small

  14. (1-ps) … … …       0,1,0 1,0,1 Tru,1,0 Tru+1,0,1 Tsu,1,0 Tsu+1,0,1 prg r r r … … … pr (1-pr)g       s (1-ps) … … …       0,0,0 1,0,0 Tru,0,0 Tru+1,0,0 Tsu,0,0 Tsu+1,0,0 +r +r +r m m m (1-pr) Mathematical Analysis

  15. (1-ps) … … …       0,1,0 1,0,1 Tru,1,0 Tru+1,0,1 Tsu,1,0 Tsu+1,0,1 prg r r r … … … pr (1-pr)g       s (1-ps) … … …       0,0,0 1,0,0 Tru,0,0 Tru+1,0,0 Tsu,0,0 Tsu+1,0,0 +r +r +r m m m (1-pr) Mathematical Analysis

  16. Mathematical Analysis General K, Pure Sender-Initiated Policy

  17. Mathematical Analysis General K

  18. Mathematical Analysis General K

  19. Numerical Results

  20. Numerical Results

  21. Numerical Results

  22. Numerical Results

  23. Numerical Results

  24. Stochastic Derivative-Free Optimization • Internal Model • External Model • Trust Region

  25. General Overview • Optimal Dynamic Threshold Scheduling Policy • Fluid limits • Diffusion limits • Analysis of Dynamic Threshold Scheduling • Consider generalized threshold scheduling policy • Matrix-analytic analysis and fix-point solution, asymptotically exact • Numerical experiments • Optimal settings of dynamic scheduling policy thresholds • Stochastic Derivative-Free Optimization

More Related