320 likes | 734 Views
Igneous Rocks. Classification of Igneous Rocks. Most Abundant Elements: O, Si, Al, Fe, Ca, Mg, K, Na Calculate Elements as Oxides (Account for O) How Much SiO 2 ? (Account for Si) What Feldspars are Present? (Account for Al, Ca, Na, K) What Else is Present? (Account for Mg, Fe).
E N D
Classification of Igneous Rocks • Most Abundant Elements: O, Si, Al, Fe, Ca, Mg, K, Na • Calculate Elements as Oxides (Account for O) • How Much SiO2? (Account for Si) • What Feldspars are Present? (Account for Al, Ca, Na, K) • What Else is Present? (Account for Mg, Fe)
Silica Content • Oversaturated: Excess of Silica • Quartz Present • Saturated: Just enough silica to combine with other ions • Undersaturated: Silica-deficient Minerals Present • Olivine, Nepheline, Corundum, etc. • Can’t coexist with quartz
Feldspars • Plagioclase vs. K-Spar (Ca and Na vs. K) • Relative Aluminum Content • Peraluminous: Al left over after Feldspars form • Sillimanite, garnet, corundum may be present • Peralkaline: Al insufficient to form Feldspars • Riebeckite, Aegerine, may be present
Other Ingredients • Ferromagnesian minerals heavily influenced by characteristics like water • The only difference between rocks with biotite, amphibole or pyroxene may be water content • Basis for classification of ultramafic rocks.
“Mainstream” Igneous Rocks • Ultramafic <40% SiO2 • Plutonic: Dunite Volcanic: Komatiite • Mafic 40-50% SiO2 • Plutonic: Gabbro Volcanic: Basalt • Intermediate 50-60% SiO2 • Plutonic: Diorite Volcanic: Andesite • Felsic >60% SiO2 • Plutonic: Granite Volcanic: Rhyolite
The Feldspars • Potassium Feldspars • T dependent • Microcline, Orthoclase, Sanidine • Plagioclase • Classic Example of Solid Solution • Ca vs. Na content • Perthite: exsolution texture • Anorthoclase: K, Ca, Na mixture
Potassium Feldspars • Microcline • Lowest Temperature variety • Plutonic rocks • Almost always perthitic • Orthoclase • Medium Temperatures • Volcanic and Plutonic Rocks • Sanidine • Highest Temperature • Volcanic Rocks • May Have Appreciable Na • More a function of cooling rate and pressure than temperature?
Plagioclase Feldspars • Albite (0-10% Ca): Where Na goes in metamorphic rocks, metasomatism • Oligoclase (10-30% Ca): Granitic rocks • Andesine (30-50% Ca): Intermediate rocks • Labradorite (50-70% Ca): Mafic rocks • Bytownite (70-90% Ca): Rare - too sodic for marble, too calcic for magmas • Anorthite (90-100% Ca): Impure metamorphosed limestones
Perthite and Anorthoclase • Ionic Radii (nm) • K: 0.133 • Ca 0.099 • Na 0.097 • Ca and Na substitute freely • K can fit in lattice at high T • Na can fit in K-spar lattice but not Ca • Perthite: K-spar and plagioclase separate during cooling (Exsolution) • Anorthoclase: Na-K mix, 10-40% K-spar
Foids (Feldspathoids) • Fill the “ecological niche” of feldspars when insufficient silica is available • Major Minerals: • Nepheline (Na,K)AlSiO4 • Leucite KAlSi2O6
Granite Granodiorite Tonalite Syenite Monzonite Diorite Gabbro Foid Syenite Foid Monzonite Foid Gabbro Rhyolite Dacite Dacite Trachyte Latite Andesite Basalt Phonolite Tephrite Basanite Volcanic and Plutonic Equivalents
Olivine • Like Plagioclase, a solid solution • Forsterite (Mg2SiO4) and Fayalite (Fe2SiO4) • Becomes More Fe-Rich as Magma Cools • Forsterite • Can be nearly pure in metamorphic rocks • Cannot coexist with quartz • Fayalite • Rarely found pure • Can coexist with quartz
Ortho- and Clinopyroxene • Orthopyroxene • Orthorhombic • Mixture of Enstatite (Mg2Si2O6) and Ferrosilite (Fe2Si2O6). The generic mixture is termed Hypersthene ((Mg,Fe)2Si2O6) • Clinopyroxene • Monoclinic • Mixture of Diopside (CaMgSi2O6) and Hedenbergite (CaFeSi2O6) The generic mixture is termed Augite ((Ca,Mg,Fe)2Si2O6)
Mode and Norm • Mode: What is actually present • Norm: Ideal mineral composition • Ignores water • Assumes minor components used predictably • Assumes major minerals form in predictable sequence • Purpose is to visualize rock from chemical data
CIPW Norm • Cross, Iddings, Pirrson and Washington • All Cations treated as oxides • Anions (S, F, Cl) treated as elements • Convert wt% to molecular proportions (Wt%/Mol Wt) • Allocate oxides to mineral phases
Allocate minor elements • Ba, Sr Ca; MnO FeO • CO2 Calcite (with CaO) • P2O5 Apatite (with CaO) • S Pyrite (with FeO) • TiO2 Ilmenite (with FeO) • F Fluorite (with CaO) • Cr2O3 Chromite (with FeO) • Cl Halite (With Na2O)
Start Forming Silicates • ZrO2 Zircon (with SiO2) • Form provisional Feldspars • Na2O Albite • K2O K-Spar • CaO Anorthite • With SiO2 and Al2O3 • May need to convert to foids if SiO2 runs out
Allocate FeO, MgO and CaO • Fe2O3 Acmite (With Na2O and SiO2) and Magnetite (With FeO) • FeO and MgO Hypersthene (provisional) • CaO + Hy Diopside • Excess SiO2 Quartz
If Silica Runs Out • Hypersthene Olivine • Albite Nepheline • K-Spar Leucite
Example • SiO2 83 • TiO2 2 • Al2O3 16 • Fe2O3 2 • FeO 10 • MgO 17 • CaO 17 • Na2O 5 • K2O 1
Let the Games Begin • Ilmenite: TiO2 0; FeO 10 - 2 = 8 • K-Spar: K2O 0; Al2O3 16 – 1 = 15; SiO2 83 – 6K2O = 77 • Albite: Na2O 0; Al2O3 15 – 5 = 10; SiO2 77 – 6Na2O = 47 • Anorthite: CaO 0; Al2O3 10 – 17 = -7! • Excess CaO • CaO 17-10 = 7; Al2O3 0; SiO2 47 – 2CaO = 27
Final Allocations • Magnetite: Fe2O3 0; FeO 10-2 = 8 • FeO + MgO = 8 + 17 = 25 • Diopside: CaO 0; FeO + MgO = 25 – 7 = 18; SiO2 SiO2 – 2CaO = 27-14 = 13 • Hypersthene: FeO + MgO 0; SiO2 13 – 18 = -5 (Call this -D) • Olivine: Ol = D = 5 • Hypersthene: Hy – 2D = 18 – 10 = 8
Final Result • Ilmenite: 2 • K-Spar: 1 • Albite: 5 • Anorthite: 10 • These are molecular proportions • Magnetite: 2 • Diopside: 7 • Olivine: 5 • Hypersthene: 8 • Multiply by Mol. Wt. and normalize for Wt%