1 / 35

Dynamics of Non-isospectral Evalution Equations

Dynamics of Non-isospectral Evalution Equations. Zhang Da-jun Dept. Mathematics, Shanghai Univ., 200444, Shanghai, China Email: djzhang@mail.shu.edu.cn Web: http://www.scicol.shu.edu.cn/siziduiwu/zdj/index.htm. Menu. Lax integrability. Solitons of the NLSE. Non-isospectral NLSEs.

Download Presentation

Dynamics of Non-isospectral Evalution Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dynamics of Non-isospectral Evalution Equations Zhang Da-jun Dept. Mathematics, Shanghai Univ., 200444, Shanghai, China Email:djzhang@mail.shu.edu.cn Web:http://www.scicol.shu.edu.cn/siziduiwu/zdj/index.htm Dynamics of Non-isospectral Evalution Equations

  2. Menu Lax integrability Solitons of the NLSE Non-isospectral NLSEs Double-Wronskian solutions Gauge transformations Nonisospectral dynamics References Dynamics of Non-isospectral Evalution Equations

  3. KdV equation Lax pair Compatible condition 1. Lax integrablity 1.1 KdV equation and its Lax pair Dynamics of Non-isospectral Evalution Equations

  4. Evolution equation Lax pair Integrable characteristics Inverse scattering transform Backlund transformation Darboux transformation 1. Lax integrablity 1.2 Lax pair Dynamics of Non-isospectral Evalution Equations

  5. Compatible condition isospectral non-isospectral 1. Lax integrablity 1.3 Isospectral and non-isospectral Dynamics of Non-isospectral Evalution Equations

  6. Energy: Velocity: Amplitude: 1. Lax integrablity 1-soliton of the KdV 1.4 Meaning of ------ Constant Dynamics of Non-isospectral Evalution Equations

  7. If How do they effect wave’s dynamics? (energy, amplitude, velocity) ? What are the related equations? ? Do these equations have connection with the isospectral version? ? 1. Lax integrablity 1.5 Questions for Menu Dynamics of Non-isospectral Evalution Equations

  8. NLSE Lax pair Zero curvature equation 2. Solitons of the NLSE 2.1 Lax pair for the NLSE GT1 GT2 Dynamics of Non-isospectral Evalution Equations

  9. NLSE N-soliton solution 2. Solitons of the NLSE 2.2 N-soliton solution to the NLSE Double-Wronskian Dynamics of Non-isospectral Evalution Equations

  10. 1-soliton (N=1) Characteristics Energy: Velocity: Amplitude: Top trace: 2. Solitons of the NLSE 2.3 1-soliton of the NLSE Dynamics of Non-isospectral Evalution Equations

  11. Head-on collision Periodic interaction when b1=b2 Period 2. Solitons of the NLSE 2.4 2-soliton of the NLSE (N=2) Menu Dynamics of Non-isospectral Evalution Equations

  12. NNLSE-I Lax pair 3. Non-isospectral NLSE (NNLSE) 3.1 NNLSE-I GT1 Dynamics of Non-isospectral Evalution Equations

  13. NNLSE-II Lax pair 3. Non-isospectral NLSE (NNLSE) 3.2 NNLSE-II GT2 Dynamics of Non-isospectral Evalution Equations

  14. NNLSE-III Lax pair 3. Non-isospectral NLSE (NNLSE) 3.3 NNLSE-III Menu Dynamics of Non-isospectral Evalution Equations

  15. NNLSE-I Solution 4. Double-Wronskian solutions 4.1 Solution to the NNLSE-I Dynamics of Non-isospectral Evalution Equations

  16. NNLSE-II Solution 4. Double-Wronskian solutions 4.2 Solution to the NNLSE-II Dynamics of Non-isospectral Evalution Equations

  17. Solution 4. Double-Wronskian solutions NNLSE-III 4.3 Solution to the NNLSE-III Menu Dynamics of Non-isospectral Evalution Equations

  18. NLSE NNLSE-I Gauge transformation 5. Gauge transformations Lax pair Lax pair 5.1 Transformation between the NLSE and NNLSE-I Dynamics of Non-isospectral Evalution Equations

  19. NLSE NNLSE-II Gauge transformation 5. Gauge transformations Lax pair Lax pair 5.2 Transformation between the NLSE and NNLSE-II Dynamics of Non-isospectral Evalution Equations

  20. NLSE NNLSE-I 5. Gauge transformations 5.3 Applications --- solutions NNLSE-II Dynamics of Non-isospectral Evalution Equations

  21. NLSE For NNLSE-I For NNLSE-II 5. Gauge transformations Conserved density/quantity 5.4.1 Applications --- conserved quantity Dynamics of Non-isospectral Evalution Equations

  22. 5. Gauge transformations For NLSE For NNLSE-I 5.4.2 Applications --- explicit conserved densities For NNLSE-II Menu Dynamics of Non-isospectral Evalution Equations

  23. 1-soliton Notations 6. Nonisospectral dynamics 6.1.1 NNLSE-I --- 1-soliton Dynamics of Non-isospectral Evalution Equations

  24. 1-soliton Comparison NLSE NNLSE-I Profile: Energy : Amplitude: Velocity: Top trace: 6. Nonisospectral dynamics 6.1.2 NNLSE-I--- Comparison with the NLES Dynamics of Non-isospectral Evalution Equations

  25. Periodic interaction ( ) Period 6. Nonisospectral dynamics 2-soliton scattering 6.1.3 NNLSE-I--- 2-soliton Dynamics of Non-isospectral Evalution Equations

  26. 1-soliton Comparison NLSE NNLSE-II Profile: Energy : Amplitude: Velocity: Top trace: 6. Nonisospectral dynamics 6.2.1 NNLSE-II--- Comparison with the NLES Dynamics of Non-isospectral Evalution Equations

  27. Quasi-periodic interaction ( ) Extremum points 6. Nonisospectral dynamics 2-soliton scattering 6.2.2 NNLSE-II--- 2-soliton Dynamics of Non-isospectral Evalution Equations

  28. Notations 6. Nonisospectral dynamics 1-soliton Top trace 6.3.1 NNLSE-III --- 1-soliton Dynamics of Non-isospectral Evalution Equations

  29. 6. Nonisospectral dynamics 2-soliton scattering No periodic interaction 6.3.2 NNLSE-III--- 2-soliton Dynamics of Non-isospectral Evalution Equations

  30. Nonisospectral evolution equations can describe solitary waves in nonuniform media; Time-dependent spectral parameter usually leads to time-dependent amplitude, velocity and energy; Some nonisospectral evolution equations are related to their isospectral counterpart; Many method for solving isospectral systems can be generalized to nonisospectral systems. Conclusions Menu Dynamics of Non-isospectral Evalution Equations

  31. Wronskian Compact form Double-Wronskian (1). Wronskian Dynamics of Non-isospectral Evalution Equations

  32. Double-Wronskian (M+N)-order column vectors: (2). Double-Wronskian If M=0, it is an ordinary N -order Wronskian; if N=0, vice versa. [Back to 2.2] Dynamics of Non-isospectral Evalution Equations

  33. NLSE Lax pair CL Riccati equation Conserved density/quantity Conservation law (CL) of the NLSE Dynamics of Non-isospectral Evalution Equations

  34. [CL] H.H. Chen,C.S. Liu, Solitons in nonuniform media, Phys. Rev. lett., 37 (1976) 693-697. [N] J.J.C. Nimmo, A bilinear Backlund transformation for the nonlinear Schrodinger equation, Phys. Lett. A, 99 (1983) 279-280. [FN] N.C. Freeman, J.J.C. Nimmo, Soliton solutions of the KdV and KP equations: the Wronskian technique, Phys. Lett. A, 95 (1983) 1-3. [TCZ] T.K. Ning, D.Y. Chen, D.J. Zhang, The exact solutions for the nonisospectral AKNS hierarchy through the inverse scattering transform, Phys. A, 339 (2004) 248-266. References Dynamics of Non-isospectral Evalution Equations

  35. Thank You! Thank You! Dynamics of Non-isospectral Evalution Equations

More Related