160 likes | 350 Views
A szénhidrátok lebontása. A biológiai oxidáció. A szénhidrátok lebontása energiatermelő folyamat - lebontó folyamat energia felszabadulásával jár - jelentős része ATP szintézisére fordítódik - ez kémiai energia máshol felhasználható - kulcsfontosságú a szénhidrátok lebontása
E N D
A biológiai oxidáció A szénhidrátok lebontása energiatermelő folyamat - lebontó folyamat energia felszabadulásával jár - jelentős része ATP szintézisére fordítódik - ez kémiai energia máshol felhasználható - kulcsfontosságú a szénhidrátok lebontása - ehhez kapcsolódik a többi szerves anyag lebontása - a biológiai oxidáció - a sejtekben zajlik - soklépéses folyamat - mindegyikhez külön enzim kell
A biológiai oxidáció 1. glikolízis - poliszacharidokból (keményítő és glikogén) és a glükózból - glükóz-foszfát (6C) - glicerinaldehid-foszfát (3C) 2 ATP - piroszőlősav (3C) 2 CO2 - acetilcsoport (2C) - acetil-KoA alakul ki
A biológiai oxidáció 2. citromsav-ciklus - körfolyamat - az oxálecetsav (4C) felveszi az acetilcsoportot (2C) - citromsav (6C) 2 db CO2 - oxálecetsavvá oxidálódik (4C)
A biológiai oxidáció 3. terminális oxidáció - végső oxidáció - ide kerülnek az előző két szakaszban termelődött NADH-molekulák hidrogénjei (oxidálódnak) - citokrómokból álló elektronszállító rendszerre kerülnek a protonok és az elektronok - egyre alacsonyabb energiaszintre kerülnek: ATP szintetizálódik - a végső elektronfelfogó: oxigén (vízzé redukálódik)
A biológiai oxidáció felfedezői - Otto Warburg - német biokémikus - a légzési oxigén felhasználását vizsgálta - felfedezte a citokrómok szerepét a légzésben - megerősítette, hogy a légzésben az energianyerés legfőbb módja a hidrogén eloxidálása vízzé - Szent-Györgyi Albert - magyar biokémikus - kimutatta, hogy a piroszőlősav oxidációját segíti a citromsav és az oxálecetsav (1937: Nobel-díj) - leírta a C-vitamin és P-vitamin biológiai szerepét - tanulmányozta az izomműködést molekuláris szinten - Hans Krebs - német biokémikus - a citromsavciklus részleteit derítette ki Angliában
Lebontó folyamatok anaerob körülmények között - lebontó folyamatok anaerob környezetben - erjedés - a glikolízis a piroszőlősav kialakulásáig megy - innen többféle reakcióút is lehetséges - a két legismertebb reakcióút: - alkoholos erjedés - piroszőlősavból szén-dioxid kilépése mellett etilalkohol (etanol) keletkezik - tejsavas erjedés - piroszőlősavból tejsav keletkezik - energia marad ezekben a végtermékekben (mindössze 2 mól ATP keletkezik)
Fotoszintézis A szénhidrátok felépítése energiát igényel - alapvető felépítő folyamat: fotoszintézis - fényenergia megkötése (átalakítása kémiai energiává) - a fény 400 és 800 nm közötti tartományát hasznosítják - szükségesek: - fényenergia - alapanyagok - enzimek - fényelnyelő anyagok - színes szerves vegyületek (pigmentek) - konjugált kettős kötéseket tartalmaznak - a szénláncban könnyen elmozdítható elektronok vannak - a fény energiacsomagjainak, a fotonoknak az energiáit átveszi - magasabb energiaszintű pályára lép egy elektron ekkor (a pályák közötti energiakülönbség a fotonok energiájával egyezik meg)
Fotoszintézis - a gerjesztett állapot rövid ideig tart - visszalép eredeti pályájára - az energia elvész fény formájában v. - az energia átkerül másik molekulára v. - maga az elektron kerül át egy elektronfelvevő molekulára - ezzel oxidálódik a fényt megkötő molekula - az elektronfelvevő molekula redukálódik - klorofill típusú vegyületek - zöld vegyületek - porfirinvázasok - ez alkotja a molekula központját - négy pirrolgyűrű alkotja - középen egy magnéziumatom van - oldalláncok vannak a pirrolokon - a-klorofill (metil-csoport) - b-klorofill (aldehid-csoport)
Fotoszintézis - karotinoid típusú vegyületek - egyszerű lipidek - karotin: narancsvörös - xantofill: sárga (a karotin oxigéntartalmú származéka) - fényelnyelési maximumok: - klorofill: kék és vörös tartományban - karotinoidok: kék tartományban - a zöld színű fényt egyik sem tudja elnyelni, ezért zöldek ezek a növények - vörös káposzta (levele lilás) - van benne klorofill - antocián tartalmú oldat a sejtek üregeiben - ez nem fényelnyelő pigment - vörös moszatok - kék fényt hasznosító fikoeritrin (pigmentanyag)
Fotoszintézis - fehérjékhez kötött a-klorofill molekulák - ezek képesek a fényenergiát kémiai energiává alakítani - nem fehérjéhez kötött pigmentek - fehérjéhez kötött a-klorofill molekulákhoz juttatják az energiát - pigmentrendszerek - fajtáik: - 1. pigmentrendszer - karotin - b-klorofill - a-klorofill - 2. pigmentrendszer - xantofill - b-klorofill - a-klorofill
Fotoszintézis - részeik: - fénygyűjtő rész (ebben különböznek) - 1. pigmentrendszer: hosszabb hullámhosszú fényt nyeli el - 2. pigmentrendszer. rövidebb hullámhosszú fényt nyeli el - reakcióközpont (fehérjékhez kötött a-klorofill molekulákból áll) - az egész 1%-át teszi ki
A fotoszintézis fény szakasza - a fotoszintézis fény szakasza - a fényenergia átalakítása kémiai energiává (a fényenergia megkötése) - az 1. pigmentrendszer központi a-klorofill molekulája a foton hatására lead egy elektront - ezt felveszi egy elektronszállító rendszer - többtagú - redoxi folyamatokra képes - citokrómok - porfirinvázasok (Fe-tartalmúak, a Fe3+ redukálódini képes Fe 2+ -vé) - végső elektronfelvevő: NADP-molekula - NADPH-vá redukálódik - az elektron felvételével - a víz fotolíziséből származó proton felvételével
A fotoszintézis fény szakasza - az 1. pigmentrendszer elektronhiánya a 2. pigmentrendszerből pótlódik - a leszakadt elektron elektronszállító rendszer juttatja át - ez az elektron jóval alacsonyabb energiaszintre jut: ATP keletkezik - a 2. pigmentrendszer elektronhiánya a víz fotolíziséből pótlódik - molekuláris oxigén is felszabadul közben - a víz a végső elektronleadó (oxidálódik a hidrogénje) - a fény szakasz végtermékei: - oxigén - ATP - NADPH - az utóbbi kettő feltétlenül kell a sötét szakaszhoz (szén-dioxid megkötéséhez)
A fotoszintézis sötét szakasza - a fotoszintézis sötét szakasza - Melvin Calvin amerikai kémikus kutatta - a szén-dioxid megkötése, redukciója - redukciós ciklus - pentóz-difoszfát köti meg a légköri szén-dioxidot - átmenetileg egy hat szénatomos molekula keletkezik - ez két három szénatomos glicerinsav-foszfátra bomlik - glicerinaldehid-foszfáttá redukálódik - ehhez NADPH és ATP kell - kétféle úton mehet tovább a folyamat - nagyobb része pentóz-foszfáttá alakul át - ez visszaalakul ATP felhasználásával pentóz- difoszfáttá - kisebb része glükóz-foszfát molekulákká alakulnak - belőle glükóz, keményítő, cellulóz keletkezhet