1 / 26

A Detailed Path-latency Model for Router Geolocation

A Detailed Path-latency Model for Router Geolocation. Sándor Laki *, Péter Mátray , Péter Hága, István Csabai and Gábor Vattay. Department of Physics of Complex Systems Eötvös Loránd University Budapest, Hungary. *E-mail: laki@ complex.elte.hu. Agenda. Introduction

aman
Download Presentation

A Detailed Path-latency Model for Router Geolocation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A DetailedPath-latencyModelforRouterGeolocation Sándor Laki*, Péter Mátray, Péter Hága, István Csabai and Gábor Vattay Department of PhysicsofComplex Systems Eötvös Loránd University Budapest, Hungary *E-mail: laki@complex.elte.hu

  2. Agenda • Introduction • Path-latencyModel • Velocity of SignalPropagationin Network • GeographicConstraints • Data Collection • Performance Analysis • Summary

  3. Motivation • Locationinformationcan be usefultobothprivate and corporeteusers • Targetedadvertisingonthe web • Restrictedcontentdelivery • Location-basedsecuritycheck • Web statistics • Scientificapplications • Measurementvisualization • Network diagnostics

  4. Geolocationin General • Passivegeolocation • Extractinglocationinformationfromdomainnames • DNS and WhoISdatabases • Commercialdatabases • MaxMind, IPligence, Hexasoft • Large and geographicallydispersed IP blockscan be allocatedto a singleentity • Activegeolocation • Activeprobing • Measurementnodeswithknownlocations • GPS-likemultilateration (CBG)

  5. MeasurementBasedGeolocation • Activemeasurements • Network Delays • Delayscan be transformedtogeographicdistance • RoundTrip Time (ping) • One-waydelay • Effects of over and underestimation • Topology • Network-pathdiscovery • Traceroutewith fixed port pairs • Interfaceclustering • Mercator, etc.

  6. PresentationOutline • Introduction • Path-latencyModel • Velocity of SignalPropagationin Network • GeographicConstraints • Data Collection • Performance Analysis • Summary

  7. Whydoweneed a latencymodel? • The basis of activemethods is totransformdelaystogeographicdistance • The modelaimstodecomposethe overall packetdelaytolinkwisecomponents • Approximatingpropagationdelaysalong a networkpath • leadsto more precisedistanceestimations...

  8. Modelling PacketDelays • A packetdelay (d) can be dividedinto… • Queuingdelay (Dq) • Processingdelay (Dpc) • Transmissiondelay (Dtr) • Propagationdelay (Dpg) Onlythepropagationcomponent has roleinthegeolocation n0 n1 n2 nH • A givenpath: • The overall packetdelayfor a networkpath (s=n0 and d=nH): …

  9. HowtoEstimatePropagationDelays • Assumptionsinthemodel • No queuing(Dq= 0) • The per-hopprocessing and transmissiondelayscan be approximatedby a globalconstant(dh) • dh = Dpc+ Dtr • Basedontheliterature and ourobservations: • dh = 100s The one-waypropagationdelayalong a givenpath:

  10. An Extra Cost - ICMP Generation Time • Incase of ICMP based RTT measurementsan extra delayappearsatthetargetnode • ICMP EchoReplyGeneration Time (Dg) • The overall RoundTripDelay: Is itpossibletomeasurethisDgdelaycomponent? Yes, there’s a way…

  11. ICMP Generation Times Dg = 300 s toavoiddistanceunderestimation Less than 1%

  12. Presentationoutline • Introduction • Path-latencyModel • Velocity of SignalPropagationin Network • GeographicConstraints • Data Collection • Performance Analysis • Summary

  13. DistanceApproximation • An upperapproximation of geographicaldistancefromsourcestodestinationd: Network cablesnotrunningstraightduetoseveralreasons • where r is thevelocity of signalpropagationinnetwork [incunits] d Physicalpropertiesof thenetworkcables s

  14. SignalPropagationin Network And theaveragevaluewas 0.27 The maximum velocitywemeasuredinnetworkwas 0.47! The maximum valuewasusedtoavoiddistanceunderestimation The velocity of signalpropagationin a coppercable is ~0.66-0.7!

  15. Presentationoutline • Introduction • Path-latencyModel • Velocity of SignalPropagationin Network • GeographicConstraints • Data Collection • Performance Analysis • Summary

  16. SolvingGeolocation • Defininggeographicconstraints • Wearelookingfor a locationsetwherealltheconstrainscometrue • Definingtheoverall tensioninthesystem • A costfunction • Byminimizingthisfunctiontheproblemcan be solved • Non-convexoptimizationproblem • Wellknownsolutionsinsensornetworks

  17. Round-Trip Time Constraint • Usingpath-latencymodel • Round-trippropagationdelayfrom a landmark • Upperapproximation of one-waypropagationdelay The node to be localized t L Landmark withknownlocation

  18. One-wayDelayConstraint • A novelconstraintfor a networkpathbetweentwolandmarks • Limiting thegeographiclength of a givennetworkpath • High-precision OWD measurements n2 L2 n3 L1 n1

  19. Presentationoutline • Introduction • Path-latencyModel • Velocity of SignalPropagationin Network • GeographicConstraints • Data Collection • Performance Analysis • Summary

  20. An Award-winningTestbed • European TrafficObservatoryMeasurementInfrastruCture(etomic) was created in 2004-05 within the Evergrow Integrated Project. • Open and publictestbedforresearchersexperimentingthe Internet • 18 GPS synchronizedactiveprobingnodes • EquipedwithEndace DAG cards • High-precisionend-to-endmeasurements • Scheduledexperiments • NO SLICES • Youowntheresources duringthe experimentation Best Testbed Award www.etomic.org

  21. Presentationoutline • Introduction • Path-latencyModel • Velocity of SignalPropagationin Network • GeographicConstraints • Data Collection • Performance Analysis • Summary

  22. Performance Analysis Geo-Rh Meanerror: 251 km Max. error: 699 km StdDev: 205 km Geo-RhOL Meanerror: 149 km Max. error: 312 km StdDev: 104 km Geo-R Meanerror: 305 km Max. error: 878 km StdDev: 236 km

  23. Presentationoutline • Introduction • Path-latencyModel • Velocity of SignalPropagationin Network • GeographicConstraints • Data Collection • Performance Analysis • Summary

  24. Summary • Estimatingpropagationdelays more precisely • Separation of propagation and per-hopdelaysinthe overall packetlatency • Velocity of signalpropagationinnetwork is muchsmallerthanweassumedbeforeduetocurvatures • The novelone-waydelayconstraintsimprovetheaccuracy of routergeolocationsignificantly • Nowadaysthesemeasurementsareavailablein a few NGN testbeds (ETOMIC, newOneLab-2nodes, etc.) • Plansforfutureextensions • The methodcan be combinedwithpassivetechniques • Improvinglatencymodel

  25. OneLab2 - The NextGeneration of ETOMIC • OneLab2 sites: • ≥2 PlanetLabnodes • New features • Dummybox • WiFiaccess • UMTS, WiMax… • 1 ETOMIC2-COMO • integratednode • Highprecision e2e measurements • ARGOS meas. card • availableviaETOMIC’s CMS • 1 APE box • A lightweight • measurementtool ETOMIC www.etomic.org OneLab2 www.onelab.eu www.etomic.org

  26. Thankyouforyourattention! Contact: laki@complex.elte.hu This work was partially supported by the National Office for Research and Technology (NAP 2005/ KCKHA005) and the EU ICT OneLab2 Integrated Project (Grant agreement No.224263).

More Related