270 likes | 547 Views
Somerset, NJ, May 1, 1993. 53 rd AVS, San Francisco November 2006. San Francisco Bay, November 2006. Rutgers University, February 16, 2008. … celebrating Ted’s 70 th birthday…. Ted Madey and Oxide Surfaces:. ca. 50 papers (many of which are highly-cited) on oxides or related topics.
E N D
Rutgers University,February 16, 2008 … celebrating Ted’s 70th birthday…
Ted Madey and Oxide Surfaces: ca. 50 papers (many of which are highly-cited) on oxides or related topics.
Auger Electron VB Ti(3p) Ti4+ Resonant photoemission: Direct Photolectron VB Ti(3p) Ti4+
Electron Stimulated O+ Emission from TiO2 Auger Electrons Conduction Band Fermi level Knotek-Feibelman model: O(2s) Ti(3p) Ti4+ VB O2- Knotek and Feibelman, PRL 40 (1978) 964 ESDIAD from TiO2: R.L. Kurtz, R. Stockbauer, and T.E. Madey “Angular Distribution of Ions Desorbing from TiO2” Nucl. Instr. Meth. B 13 (1986) 518
point defect O(2) O(3) Ti(5) R.L. Kurtz, R. Stockbauer, and T.E. Madey, “Synchrotron Radiation Studies of H2O Adsorption on TiO2(110)”, Surf. Sci. 218 (1989) 178; J.-M. Pan, B.L. Maschhoff, U.D., and T.E. Madey, “Interaction of water, oxygen, and hydrogen with TiO2(110) having different defect densities”, JVST B 10 (1992) 2470 (Combined >400 citations) Adsorption of Water on TiO2(110): TiO2(110)
U. D., J.-M. Pan, and T.E. Madey"Ultrathin Metal Films on TiO2(110): An Overview"Surface Science, Volume 331-333 (1995) 845
Mirrors: Si/Mo multilayers EUV Extreme UV Lithography (= 13.4 nm) S. Bajts, N.V. Edwards, and T.E. Madey, “Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation” Surf. Sci. Rep. 63 (2007) 73
EUV HCx H2O (Collaboration:Fraunhofer Institut für Angewandte Optik und Feinmechanik, National Institute of Standards, Rutgers University, Tulane University, Intel) EUV mirror contamination mechanisms 13.5 nm, 92eV Cap layer surface, sub-surface oxidation surface carbon growth 12
Theodore E. Madey, Boris Yakshinskiy, M. Nejib Hedhili, Shimon Zalkind
4. Mitigation for MMA/TiO2 at 300K( oxygen and electron-irradiation: 100µA, 100eV) O2 is effective mitigating agent for TiO2 Theodore E. Madey, Boris Yakshinskiy, M. Nejib Hedhili, Shimon Zalkind
Electron-stimulated desorption of oxygen from TiO2(011)-2x1 Dec. 2005
Rutile TiO2 (Equilibrium Crystal Shape) Ramamoorthy and Vanderbilt Phys. Rev. B 49, 16721 (1994) O(1) - ‘titanyl groups’’ O(3) O(3) Ti(5) TiO2(011)-2x1: ? T.J. Beck et al., PRL 93 (3) (2004) 036104; Di Valentin et al., JACS 2005; Beck et al, Surf. Sci. Lett, 2005; Dulub et al., Surf. Sci, 2006
Rutile TiO2 (Equilibrium Crystal Shape) Ramamoorthy and Vanderbilt Phys. Rev. B 49, 16721 (1994) TiO2(011)-2x1: ‘Brookite-like’ model (XQ Gong et al, Surf Sci 2008) T.J. Beck et al., PRL 93 (3) (2004) 036104; Di Valentin et al., JACS 2005; Beck et al, Surf. Sci. Lett, 2005; Dulub et al., Surf. Sci, 2006
Electron Stimulated Desorption Ion Angular Distribution (ESDIAD) from TiO2(011)-(2x1) Auger Electrons Conduction Band 300 eV [100] Fermi level Knotek-Feibelman model: [011] O(2s) Ti(3p) Ti4+ VB O2- [100] O+ O+ Knotek and Feibelman, PRL 40 (1978) 964
before 4% Thermally induced O-vac. defects. e- 5 min 2.3 x 1016 e/cm2 Zig-zag atoms (O atoms) disappear rapidly with electron bombardment (high cross section). 35% e- 20 min 9.2 x 1016 e/cm2 One-dimensional rows of O atoms instead of zig-zag arrangement. 55% e- 1.8 x 1017 e/cm2 40 min 70% STM of TiO2(011)-(2x1) after electron bombardment O. Dulub, M. Batzill, S. Solovev, E. Loginova, A. Alchagirov, T. E. Madey, and U. Diebold, Science 317 (2007) 1052 – 1056
The effect of electron bombardment on the defect structure of TiO2(011)-(2x1) Clean TiO2(011) surface before irradiation. Density of oxygen vacancies is ~ 4% 9.2 x 1016 e/cm2 55% vacancies
Modeled defect configuration: experiment D = 9.2 x 1016e/cm2 N = 55% vacancies Quenching of electronic excitation by defect state Site-specific cross sections for electron stimulated desorption: Once a defect is created, the desorption probabilities for the four neighboring atoms are adjusted 1/20 1/20 1/2000 1/2000 1/20 1/200 1/200
(1/20) = 1.2 x 10-16 cm2 n = Pn A (1/200) = 1.2 x 10-17 cm2 P - desorption probability A - area per surface O atom (25 Å2) (1/2000) = 1.2 x 10-18 cm2 1/20 1/20 1/2000 1/2000 1/20 1/200 1/200 experiment D = 9.2 x 1016e/cm2 N = 55% vacancies Quenching of electronic excitation by defect state Site-specific cross sections for electron stimulated desorption: O. Dulub, M. Batzill, S. Solovev, E. Loginova, A. Alchagirov, T. E. Madey, and U. Diebold, Science 317 (2007) 1052 – 1056
Lessons I learned from working with Ted: • Enjoy what you do. • Pay attention to details. • “Published means forever” - write well! • Prepare your talks. • Pay attention at conferences. • Read. • Read. • Read. • You can be successful in science, AND a good person.
We will always remember you, Ted. Your students, and your students’ students, and their students…