430 likes | 572 Views
Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer Indian Summer School 2011 Extreme Matter in the Universe (part 1). www questions. when where what t ~10^-6 s everywhere hadronization small
E N D
Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer Indian Summer School 2011 Extreme Matter in the Universe (part 1)
www questions • when where what • t ~10^-6 s everywhere hadronization small • t ~ 10^2 s everywhere nucleosynthesis large • neutrino decoupl. • e+ e- annihilation • 3) now neutron stars cbm large • 4) now CERN hadronization small • 5) 2018 AD FAIR CBM large after Big Bang
UrQMD + GEANT4 What is Extreme? (i) hot: T ~ 100 MeV ~ 10^12 K RX J185635-3754 (ii) dense: rho ~ 10^15 g/cm^3 ~ 5 rho_0 (iii) fast: dt < 10 fm/c ~ 30 ys = 30x10^-24 s
Numerology in nuclei
What are our Questions? universe hadronization universe nucleosynthesis neutron stars LHC, RHIC FAIR CBM 1 2 3 4 5 T x x x rho x x dt x x 2) = rather normal, but interesting playground hot dense short QCD hadrons (structure + interactions) phase diagram of SIM deconfined SIM = sQGP = ?
Phase Diagram of SIM T T CEP CEP Nf = 3 Nf = 3 mix n T Nf = 3 Barz et al., PLB 1987
T or n phase diagram of water
Gauge Theories w/o SSB Abelian (QED) non-Abelian (QCD) 1 Landau pole UV slavery 1/137 asymp. freedom 0 E E sQCD pQCD non-trivial vacuum: condensates not neccessarily weak-coupling: alpha too large
Columbia plot Wuppertal-Bp plot O(4) vs. Ising
Hadron Resonance Gas Wuppertal-Bp T < Tc: hadrons Dashen-Ma-Bernstein theorem
Gluon Gas: Nf = 0 QCD trace anomaly: e – 3p = 0
Trace Anomaly/Interaction Measure Bielefeld lattice QCD: Tc puzzle quasi-particle model: adjustment to lattice QCD results susceptibilities, transport coeff.
Bielefeld-Swansea data neglect strong interaction QPM c0 lQCD D=1.15 c2 c6 c4
Tools: (1) Fluid Dynamics long-wavelength modes T(x), mu(x), u(x) and their gradients currents 1st law of thermodyn. 1) 2nd law of thermodynamics: 2) conserved charges: 3) EoM: Euler/Navier-Stokes curvilinear coordinates/Riemann space-time:
t x • = control eq. (seldom constructive eq.) • = local charge conservation • = 4 eqs. for 4 components of constitutive eqs.: perfect fluid dissipation What is flow? Choice of 4-velocity (3 independent components) • Eckart: flow of net charge • LL: flow of energy LL condition:
even when neglecting dissipative effects: EoS is needed p(e,n) or p(T,mu) or s(e,n) or ... first-principle calculations (lattice QCD, large-T expans.) phenomenology, measurements V, E, N_i: extensives e, n_i T, mu_i: intensives entropy density s, pressure p ... applicability of hydro: container > gradients large enough
Tools (2): Thermodynamics Gibbs-Duham: Euler: susceptibilities: Taylor expansion (Bielefeld):
Example: Cosmic Confinement perfect fluid + cosmological principle homogeneity + isotropy in 3D Robertson-Walker metric (coordinates) Einstein eqs. expanding universe (matter cools and becomes dilute) E S R(t1) E S comoving volume R(t2)
Friedmann eqs. EoS
p T Bag Model EoS: too simple p Gibbs criteria for phase equilibrium (maximum entropy) qg pi 1st order pt (nucleation, bubbles etc.) p_qg = p_pi T_qg = T_pi mu_qg=mu_pi -p = free energy T Tc T e,s mix Tc T 10 t
Cosmic Swing (1): SIM from small mu to large mu hadronization
Driving the Cosmic Swing: eta mystery: 5year WMAP CDM God given init. cond. or via baryogenesis (sphalerons) specific entropy conserved: T > Tc: relativistic quarks carry baryon number T < Tc: non-relativistic nucleons carry baryon number T ~ 45 MeV: annhilation of baryons, excess (~ eta) remains why is baryon excess so small OR why is entropy so large?
Densities Boltzmann approx.: high/low temperature approx.:
g q q q 1000 fm 5 m 1 fm 100000 fm 1 fm 1 fm -10 T = 2.3 x 10 MeV Stretching of Distances T = 170 MeV B B B Dark Matter In nuclei & neutron stars On average On Earth
Relics of Cosmic Confinement? after 30 years research: none • cosmic confinement is too slow • gradual matter conversion in qg h cross over • if confinement would be 1st order pt: • bubble growth, supercooling, inhomogeneities • - uncertainty: neutrino degeneracy Jenkowski, BK, Z. Phys. 1990
Primordial Nucleosynthesis the first three minutes four fundamental forces in concert: - gravity expansion of universe - electromagnetic e+ e- annihilation - weak neutrino decoupling - strong/nuclear cooking the leight elements: specific abundances for given cosmic expansion + reaction rates charge neutrality:
e-, e+ e-, e+ e- e- - e+ e- - e+ e+
e- e+ Big Bang e+ e- Annihilation t ~ 0.3 s: neutrino decoupling t ~ 15 s, T ~ 3 x 10^9 K: e+ e- annhilation disappearance of last antimatter in universe only excess electrons survive „reheating“ of photons, nucleons Kolb-Turner
e+ e- Nano Droplets Yaresko, Munshi, BK, Phys. Plasma 2010 Munshi, BK, PRA 2009 first estimates: Shen, Meyer-ter-Vehn, PRE 65
The Universe as Reactor Friedmann: T(t) from only destruction after BNN D: baryometer 4He: chronometer
Primordial Nuclear Network Dominant Channels (strong int./QCD): 2. D, 4. 3He, 8. T, 6. 4He, 7. 7Li
Be 7 12 Li 7 10 11 9 3 He 4 He 7 8 6 4 3 2 p D T 5 1 n Nollett-Burles
Rate Equations for 2 2 Processes rates (T) Init. Conds.: earlier equilibrium values integrate up to freeze-out add decays T(t)
Evolution of Abundances D mass fraction Be
Cosmic Concordance? new physics beyond Standard Model? Xdimensions, more neutrinos, axions, SUSY particles, G(t), ...
Neutron Life Time nearly all n are in 4He: Y(4He) depends on and also on (other abundances are robust) 904 886.7 869 fastBBN
Number of Light Neutrinos 2.5 3 3.5
Cosmic Interim Summary Cosmic Confinement/Hadronization T > Tc = 170 MeV, t < 10^-6 s: mu small, q + g T < Tc, t > 10^-6 s: hadrons emerge and decay, no relics T ~ 40 MeV: nucleons annihilate (up to the excess) no relics Primordial Nucleosynthesis concides with neutrino decoupling and e+ e- annihilation abundancies of light nuclei are sensitive to expansion history = relics