470 likes | 790 Views
The structure of a proto-neutron star. Chung- Yeol Ryu Hanyang University, Korea. C.Y.Ryu , T.Maruyama,T.Kajino , M.K.Cheoun , PRC2011. C.Y.Ryu , T.Maruyama,T.Kajino , G.J.Mathews , M.K.Cheoun , PRC2012 . Outline 1. Introduction 2. Motivations 3. Models and conditions
E N D
The structure of a proto-neutron star Chung-YeolRyu Hanyang University, Korea C.Y.Ryu, T.Maruyama,T.Kajino, M.K.Cheoun, PRC2011. C.Y.Ryu, T.Maruyama,T.Kajino, G.J.Mathews, M.K.Cheoun, PRC2012.
Outline 1. Introduction 2. Motivations 3. Models and conditions 4. Results 5. Summaries
1. Introduction Vela pulsar
2. Motivations The depiction of a Shapiro Delay
Production of a proto-neutron star The structure of supernovae The production of proto-neutron star
Supernovae explosion and PNS A. Burrows(1995)
Motivation 2 Isentropic process Burrows&Lattimer APJ (1981), APJ(1987) without convection with convection
Motivation 3 S. Reddy et al. PRD(1998)
Motivation 4 S. Reddy et al. PRD(1998) A. Burrows’ simulation
Idea Beta equilibrium n + νe p + e- : • Trapped ratio may depend on densities and temperature.
Many body theory in isolated system Thermodynamic potential Ω - Minimum condition Microscopic model: Hamiltonian or Lagangian Grand partition function Z • Chemical potential • Chemical equilibrium for given reaction • - Minimum of Gibbs free energy • Equation of state • - Energy density, Pressure, Temperature • Observables (mass and radius for neutron star) from EoS
Constraints from experiment Neutron star
Nuclear matter properties at saturation density • Saturation density • 0 = 0.15 - 0.17fm-3 • Binding energy • B/A =-(ε/ρ – m N)= 16MeV • Effective mass of a nucleon • m N*/m N = 0.7 - 0.8 (이론) • Compression modulus • K-1= 200 - 300MeV • Symmetry energy • asym= 30 - 35MeV
Symmetry energy from HIC and finite nuclei Symmetry energy Energy per nucleon in symmetric matter Energy per nucleon in asymmetric matter
Relativistic mean field model Nucleons (Dirac equation) + meson fields (Klein-Gordon equation) Meson fields mean fields (notransition)
N N Mean fields theory : σ-ω-ρmodel Long range attraction(σ meson) + Short range repulsion(ω meson) + Isospin force : ρ meson Other mesons are neglected !! pion : (-) parity, other mesons : small effects, simplicity
σ, ω, ρ QHD and QMC models Hadronic degrees of freedom : Quantum Hadrodynamics (QHD) Quark degrees of freedom : Quark-meson coupling (QMC) model σ, ω, ρ
σ, ω, ρ The Lagrangian of QMC model
Eq. of state and entropy Isentropic process : S = 2 (S : entropy per a baryon)
The conditions in neutron star • Baryon number conservation : • Charge neutrality : • chemical equilibrium (Λ, Σ, Ξ) • Fixed YL =? or other condition - μνe where x is trapped ratio.
TOV equation(Mass and radius) • Macroscopic part – General relativity • Microscopic part – Strong interaction model • Einstein field equation : Static and spherical symmetric neutron star (Schwarzschild metric) Static perfect fluid Diag Tμν = (ε, p, p, p) • TOV equation : • equation of state (pressure, energy density)
The moment of inertia • Metric tensor • Kepler frequency • The moment of inertia in slow rotating approx.
Our picture Conditions Models QHD & QMC models -Eq. of motion • Baryon number conservation • Charge neutrality • Beta equilibrium with neutrinos • Trapped ratio depends on densities • Equation of state • - Energy density, Pressure, Temperature • Mass, radius and the moment of inertia
Populations of neutrinos(S=2) • Our result A. Burrows’simulation
Mass and radius Cold NS(T=0) Proto-NS(S=2)
Summaries 1. Proto-neutron star : After supernovae explosion, the initial state of NS is called PNS. 2. YL = 0.4 condition is not enough to explain trapped neutrino ratio. 3. So, we introduce that the trapped ratio may depend on the baryon densities. - The results agree with simulation. 4. The moment of inertia : PNS CNS - Pulsar rotation may depend on the mass.