1 / 45

Baryonic and Dark Matter

Baryonic and Dark Matter. Next Generation Surveys: Scientific, Observational and Instrumental Challenges. Andy Taylor Institute for Astronomy, School of Physics University of Edinburgh, UK. Gray & Taylor et al 2005. Outline. Scientific aims of future surveys Overview of future surveys

amathis
Download Presentation

Baryonic and Dark Matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Baryonic and Dark Matter Next Generation Surveys: Scientific, Observational and Instrumental Challenges Andy Taylor Institute for Astronomy, School of Physics University of Edinburgh, UK Gray & Taylor et al 2005 IoP-RAS Meeting

  2. IoP-RAS Meeting

  3. Outline • Scientific aims of future surveys • Overview of future surveys • Challenges for future surveys • Summary IoP-RAS Meeting

  4. Outline • Scientific aims of future surveys • Overview of future surveys • Challenges for future surveys • Summary IoP-RAS Meeting

  5. Aims of Lensing Surveys • What are the scientific challenges for lensing? • Astrophysical: • Galaxy halo properties (galaxy-galaxy, galaxy-quasar) • Clusters & filaments (mass mapping vs Xray & starlight) • High-redshift Universe (gravitational telescopes) • Fundamental: • Dark Matter properties ( DM mass & interactions, neutrino mass) • Dark Energy properties (EoS, evolution) • Initial conditions (s8, ns, dns/dlnk) • Testing Einstein Gravity IoP-RAS Meeting

  6. Properties of Dark Matter • Cold Dark Matter: • Mass – break in matter power spectrum • Thermal properties – resolve smallest halos with shear and flexion. • Neutrinos • Mass – another scale length in matter power spectrum from free-streaming. IoP-RAS Meeting

  7. Baryonic & Dark Matter in COSMOS Residual systematics (“B modes”) Blue: stellar mass Yellow: galaxy number Red: hot gas B-mode map IoP-RAS Meeting Massey, et al, Nature, 2007

  8. COSMOS 3-D Dark Matter Maps Photon equation of motion: Right Ascension Redshift 0.0 0.2 0.4 0.6 0.8 Declination IoP-RAS Meeting Massey, et al, Nature (2007)

  9. w = -1 r(z) w = 0 z Observable Effects of Dark Energy • Geometry: DE changes the photon distance-redshift relation: r(z) • Angular diameter • distance DA • Luminosity • Distance DL • Dynamics: Alters the growth of density perturbations, d(t). d r IoP-RAS Meeting

  10. Constraining w from the CMB + Supernova Energy-density scales with expansion as Close to a Cosmological Constant. (assumes flat Universe) Spergel et al ApJ 2006 IoP-RAS Meeting

  11. Constraining w from the CMB + Supernova + Lensing from CFHT Energy-density scales with expansion as Close to a Cosmological Constant. (assumes flat Universe) Spergel et al ApJ 2006, Tereno et al 2006 IoP-RAS Meeting

  12. Initial Conditions - Inflation Spergel et al. ApJ, 2006 IoP-RAS Meeting

  13. Testing Einstein Gravity • Three tests of gravity: • Model testing. Eg, DGP, TeVeS, braneworld. • Generalized Einstein metric • Consistency Relations: Geometric wG versus Dynamic wD. IoP-RAS Meeting

  14. Outline • Scientific aims of future surveys • Overview of future surveys • Challenges for future surveys • Summary IoP-RAS Meeting

  15. Timeline Lensing (+z) Spec IR Space 2004 SDSS/AAOmega • CFHTLS DEEP2 2006 LAMOST • Pan-STARRS-1UKIDSS • VST-KIDSVIKING/VHS Planck 2009 Pan-STARRS-4 • DES WFMOS JWST JWST 2011 HSC/Subaru VIRUS 2012 2013 SNAP/JEDI/ADEPT/Destiny? 2014 LSST 2015 2016 • DUNEDUNE DUNE 2018 2019 • SKA (Radio) SKA (Radio) 2025 ELT IoP-RAS Meeting

  16. 2003-2008: CFHTLS • Canada-France-Hawaii 3.6m Telescope • Mauna Kea • 40 CCD, 340 Mpixels • 1 sq deg MegaCam • Surveys: • Wide: 170 sq deg • u*g’r’i’z’, i’=24.5 • Deep: 4 sq deg, r’=28 IoP-RAS Meeting

  17. 2007-2010: Pan-STARRS-1 • Panoramic Survey Telescope and Rapid • Response System (Pan-STARRS). • Hawaii, MPIA, Taiwan, • Harvard, Johns Hopkins, • UK (Edinburgh, Belfast, Durham), • 1.8 meter primary • 1.4Gpixel camera. • 7 sq deg fov. • Medium Deep Survey • 3p Survey • g, r, i, z, y (r=24.5) • PS4 – 4xPS1 (2009). IoP-RAS Meeting

  18. 2008-2013: VST-KIDS & VIKING • ESO’s Kilo-Degree Survey • 2m primary • 184Mpixels 1sqdeg fov OmegaCAM • 1,500 sq deg • u’g’r’i’z’ • VIKING • (VISTA Kilo-degree INfrared Galaxy survey) • 1500 sq deg in parallel on VISTA • Z,Y,J,H,Ks IoP-RAS Meeting

  19. 2010-2015: DES • The Dark Energy Survey. • 4-metre Blanco at CTIO (South) • 500 Megapixel, 3 sqdeg fov camera • 5 yr survey (30% of time). • g,r,i,z over 5000 sq deg • r = 24.1 (10sig) • 4 dark energy probes: • WL, BAOs, SN & Clusters IoP-RAS Meeting

  20. 2011-2016: Subaru-HyperSuprimeCam • 8.3m Primary • 3.14 sq deg fov • 1.4 Gpixel camera • HyperSuprimeCam • 3500 sq deg/year • ~17,500 sq deg (5 yrs) • ugriz? ? IoP-RAS Meeting

  21. 2014-2024: LSST • Large Synoptic Survey Telescope (LSST) • 8.4m (effectively 6.5m) Primary • 3.2 Gpixel, 9.6 sq deg fov camera • ugrizY • Cerro Pachon, Chile • 30Tbyte per night IoP-RAS Meeting

  22. 2017-2021: DUNE – Dark UNiverse Explorer • Proposal to ESA Cosmic Visions programme. • 1.2m satellite telescope • r-i-z + Y,J,H • 0.5 sq deg fov • 3-year weak lensing survey: • 20,000 sq deg • AB=24.5 (10sig), zm=0.9 • n0=35/sq arcmin • Ground-based optical complement • needed for photo-z’s. IoP-RAS Meeting

  23. 2020-2025: SKA • Square Kilometre Array (SKA) Radio interferometer. Frequency range 100 MHz - 25 GHz 1 sq deg fov (1.4GHz) - 200 sq deg (0.7GHz) 20,000 sqdeg zm~1.0 sz=0 (spec) n0=10/sqarcmin (useable HI sources) IoP-RAS Meeting

  24. Grasp vs. Start Date SKA~108 103 102 10 1 LSST HSC PS4 DES Grasp (D2*fov) Dark Energy Survey Pan-STARRS-1 PS1 Grasp for optical surveys doubles every ~2.5 yrs CFHT VST-KIDS 170 sq deg DUNE 1700 sq deg 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 IoP-RAS Meeting Start Date

  25. Survey Area vs. End Date 104 103 102 PS1 PS4 DUNE LSST SKA HSC DES Area [sqdeg] Dark Energy Survey Pan-STARRS-1 VST-KIDS 170 sq deg CFHT-W 1700 sq deg 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 End Date IoP-RAS Meeting

  26. Survey Depth vs. Area 104 103 102 PS1 DUNE PS4/ SKA LSST HSC DES Area [sqdeg] VST-KIDS Constant Time CFHT-W 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Depth (Median Redshift) IoP-RAS Meeting

  27. Dark Energy Figure of Merit (FoM) • Dark Energy Task Force Figure of Merit: • Define pivot redshift, zp: wa w(z) wp Dw0 w = -1 zp z IoP-RAS Meeting 0

  28. Dark matter halos Observer 3-D Shear Power (e.g. Heavens 2003, Kitching, Heavens & Taylor 2005) Background sources IoP-RAS Meeting

  29. 3-D Shear Ratios Background sources Dark matter halos (Jain & Taylor 2003, Taylor, Kitching, Bacon, Heavens 2005) Observer • Signal depends on (Wm, Wv, w0, wa) and is insensitive to clustering. IoP-RAS Meeting

  30. FoM for Dark Energy from Lensing 3-D shear power and shear-ratios combined with Planck Explorer CMB survey (2008) Current limit 1/FoM CFHT KIDS PS1 SKA DES HSC PS4 FoM doubles every 2.5 yrs DUNE LSST Saturation IoP-RAS Meeting 2023 (with Tom Kitching) End Date

  31. Outline • Scientific aims of future surveys • Overview of future surveys • Challenges for future surveys • Summary IoP-RAS Meeting

  32. db Effect of Systematics • What is the effect of systematics in results? • Can estimate effect using Fisher Matrix formalism: • Eg for a straight line zero-point fit: y b IoP-RAS Meeting x (Taylor, Kitching & Heavens, 2006)

  33. Image Distortions • Image distortions: (Kitching, Taylor & Heavens 2007) calibration rotation bias. IoP-RAS Meeting

  34. Image Distortions • Image distortions: calibration, rotation, bias. • Effect of these on constant w: • Shear Power: no 1st order effect from gbias: • Shear-ratios: No bias to 1st order. • Require: IoP-RAS Meeting

  35. Observational Challenges • Photometric redshifts: calibration, bias, outliers zphot zspec Abdalla et al (2007) (Abdalla et al, 2007; Kitching, Taylor & Heavens 2007) IoP-RAS Meeting

  36. Observational Challenges • Photometric redshifts: calibration, bias, outliers • Can estimate bias effect from Fisher analysis: • Shear Power: • Shear-ratios: Shear-ratio: IoP-RAS Meeting

  37. Photometric Redshift Challenges • 5-optical + 3-IR? VST-KIDS/VIKING. • Do we need U-band? VST-KIDS • Calibration with spectroscopic surveys • How many? 105? VLT, WFMOS, ELTs? • Need synergy with IR & spectroscopic surveys. Abdalla et al (2007) IoP-RAS Meeting

  38. Intrinsic Alignment Challenges • Two alignment effects: • Intrinsic-Intrinsic alignments • Galaxy-Intrinsic alignment IoP-RAS Meeting (Bridle & King, 2007; Kitching, Taylor & Heavens 2007)

  39. Intrinsic Alignment Challenges • Model using Heymans et al (2006). • Find no effect on shear-ratio signal (averaged out), but enters noise. • Minimal effect on shear-power (but see Bridle & King 2007). • Using signal where alignment contribution is small. IoP-RAS Meeting

  40. Marginalize over Nuisance Parameters • Use data to estimate these parameters (self-calibration). • Marginalisation over uncertainties will increase error: w Dwmarg Dwcond gbias IoP-RAS Meeting

  41. Marginalize over Nuisance Parameters • Effect of marginalisation over image distortion uncertainties, for Shear + Ratios + Planck: • For a DUNE mission FoM (Dwp): • Shear Power Shear-Ratio Combined • Baseline 500 (0.015) 150 (0.024) 915 (0.012) • Pz+IA+g 116 (0.03) 70 (0.03) 670 (0.014) • 0.1% prior 440 (0.02) 100 (0.028) 900 (0.012) Mostly photo-z’s Mostly Image Distortions (Kitching, Taylor & Heavens 2007) IoP-RAS Meeting

  42. Nonlinear Matter Distribution • Non-linear matter power spectrum. • Fitting functions not accurate • Need MC N-body sims • Baryons? • Non-Gaussian corrections to the shear field. • Covariance of power (4pt-fn) • Higher-order correlations • Non-Gaussian likelihoods log Clgg log l P(k) k IoP-RAS Meeting

  43. Data Analysis Challenges • Tera/Pico-Bytes of data to push through pipeline. (eg. LSST raw=1500GB & Cats=400GB) • 4 layers: • Data acquisition, book keeping • Raw Data Reduction (registration) • Shape analysis (KSB++, shapelets, K2K, automated) • Science analysis (map making, power spectra, etc) • How do we simulate large dynamic range? • And Monte-Carlo surveys ~1000 times? • c.f. CMB temperature & polarisation experiments (see A. Challinor’s Talk). IoP-RAS Meeting

  44. Organizational Challenges • How to coordinate the effort? • EU Research-Training Network. • DUEL (Dark Universe with Extragalactic Lensing) • Exploit Cosmological Lensing from CFHTLS, Pan-STARRS, VST-KIDS • Plan for future surveys (DUNE…) • 8 Network Partners: • Edinburgh, Paris, Bonn, Heidelberg, Munich, Leiden, Naples, British Columbia • 7 Postdocs & 7 PhD students across network. • Training & exchange of methods & data. IoP-RAS Meeting

  45. Conclusions • Map dark matter in 3-D over all sky to z=1. • Expect DE FoM to double every 2.5 years. • Dark Energy probes saturate beyond z=1. • Bias in nuisance parameters biases w. • Self-calibration leads to doubling of errors. • Can add extra priors, or combine WL methods. • Optical/IR, Photo-z/Spec-z, Ground-Space synergies • Major challenges in data analysis lie ahead! IoP-RAS Meeting

More Related