240 likes | 381 Views
Environmental Remote Sensing GEOG 2021. Lecture 3 Spectral information in remote sensing. visualisation/analysis. spectral curves spectral features, e.g., 'red edge’ scatter plot two (/three) channels of information colour composites three channels of information
E N D
Environmental Remote Sensing GEOG 2021 Lecture 3 Spectral information in remote sensing
visualisation/analysis • spectral curves • spectral features, e.g., 'red edge’ • scatter plot • two (/three) channels of information • colour composites • three channels of information • principal components analysis • enhancements • e.g. NDVI
visualisation/analysis • spectral curves • reflectance (absorptance) features • information on type and concentration of absorbing materials (minerals, pigments) • e.g., 'red edge': increase Chlorophyll concentration leads to increase in spectral location of 'feature' e.g., tracking of red edge through model fitting or differentiation
Red Edge Position point of inflexion on red edge REP moves to shorter wavelengths as chlorophyll decreases
Measure REP e.g. by 1st order derivative REP correlates with ‘stress’, but no information on type/cause See also: Dawson, T. P. and Curran, P. J., "A new technique for interpolating the reflectance of red edge position." Int. J. Remote Sensing, 19, (1998), 2133-2139.
vegetation Soil line Consider red / NIR ‘feature space’
visualisation/analysis • Colour Composites • choose three channels of information • not limited to RGB • use standard composites e.g. false colour composite (FCC) • learn interpretation • Vegetation refl. high in NIR on red channel, so veg red and soil blue
Std FCC - Rondonia visualisation/analysis
visualisation/analysis Std FCC - Swanley TM data - TM 4,3,2
visualisation/analysis Principal Components Analysis • PCA (PCT - transform) • may have many channels of information • wish to display (distinguish) • wish to summarise information • Typically large amount of (statistical) redundancy in data
visualisation/analysis Principal Components Analysis red NIR See: http://rst.gsfc.nasa.gov/AppC/C1.html
NIR red • Scatter Plot reveals relationship between information in two bands • here: • correlation coefficient = 0.137
visualisation/analysis Principal Components Analysis • show correlation between all bands TM data, Swanley: correlation coefficients : 1.000 0.927 0.874 0.069 0.593 0.426 0.736 0.927 1.000 0.954 0.172 0.691 0.446 0.800 0.874 0.954 1.000 0.137 0.740 0.433 0.812 0.069 0.172 0.137 1.000 0.369 -0.084 0.119 0.593 0.691 0.740 0.369 1.000 0.534 0.891 0.426 0.446 0.433 -0.084 0.534 1.000 0.671 0.736 0.800 0.812 0.119 0.891 0.671 1.000
visualisation/analysis Principal Components Analysis • particularly strong between visible bands • indicates (statistical) redundancy TM data, Swanley: correlation coefficients : 1.000 0.927 0.874 0.069 0.593 0.426 0.736 0.927 1.000 0.954 0.172 0.691 0.446 0.800 0.874 0.954 1.000 0.137 0.740 0.433 0.812 0.069 0.172 0.137 1.000 0.369 -0.084 0.119 0.593 0.691 0.740 0.369 1.000 0.534 0.891 0.426 0.446 0.433 -0.084 0.534 1.000 0.671 0.736 0.800 0.812 0.119 0.891 0.671 1.000
PC1 PC2 NIR red visualisation/analysis Principal Components Analysis • PCT is a linear transformation • Essentially rotates axes along orthogonal axes of decreasing variance
96.1% of the total data variance contained within the first 3 PCs visualisation/analysis Principal Components Analysis • explore dimensionality of data % pc variance : • PC1 PC2 PC3 PC4 PC5 PC6 PC7 • 79.0 11.9 5.2 2.3 1.0 0.5 0.1
visualisation/analysis Principal Components Analysis • e.g. cut-off at 2% variance • Swanley TM data 4-dimensional • first 4 PCs = 98.4% • great deal of redundancy TM bands 1, 2 & 3 correlation coefficients : 1.000 0.927 0.874 0.927 1.000 0.954 0.874 0.954 1.000
Dull - histogram equalise ... visualisation/analysis Principal Components Analysis • display PC 1,2,3 - 96.1% of all data variance
visualisation/analysis Principal Components Analysis • PC1 (79% of variance) Essentially ‘average brightness’
visualisation/analysis Principal Components Analysis stretched sorted eigenvectors PC1 +0.14 +0.13 +0.28 +0.13 +0.82 +0.12 +0.43 PC2 -0.44 -0.27 -0.60 +2.23 +0.47 -0.49 -0.77 PC3 +1.68 +1.35 +2.45 +1.34 -1.49 -0.67 +0.05 PC4 +0.29 +0.10 -1.22 +1.90 -1.83 +4.49 +2.30 PC5 +0.03 -0.39 -2.81 +0.70 -1.78 -5.12 +6.52 PC6 10.42 +1.10 -6.35 -0.70 +1.64 -0.23 -2.39 PC7 -8.77 28.50 -8.37 -1.43 +1.04 -0.40 -1.75
visualisation/analysis Principal Components Analysis • shows contribution of each band to the different PCs. • For example, PC1 (the top line) almost equal (positive) contributions (‘mean’) PC1 +0.14 +0.13 +0.28 +0.13 +0.82 +0.12 +0.43 • PC 2 principally, the difference between band 4 and rest of the bands (NIR minus rest) PC2 -0.44 -0.27 -0.60 +2.23 +0.47 -0.49 -0.77
visualisation/analysis Principal Components Analysis • Display of PC 2,3,4 Here, shows ‘spectral differences’ (rather than ‘brightness’ differences in PC1)