1 / 13

Ontology Management

Ontology Management. Service-Oriented Computing: Semantics, Processes, Agents – Munindar P. Singh and Michael N. Huhns, Wiley, 2005. Highlights of this Section. Motivation Standard Ontologies Consensus Ontologies. Motivation.

amelie
Download Presentation

Ontology Management

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ontology Management Service-Oriented Computing: Semantics, Processes, Agents– Munindar P. Singh and Michael N. Huhns, Wiley, 2005

  2. Highlights of this Section • Motivation • Standard Ontologies • Consensus Ontologies Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  3. Motivation • Descriptions of services are improved through the use of ontologies • But how do we ensure the parties involved agree upon the ontologies? • Traditional approach: standardize the ontologies via a formal process • Emerging approach: • Be more like the Web • Figure out the “correct” ontology via consensus Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  4. Standard Ontologies Standardization is more a sociopolitical than a technical process • IEEE Standard Upper Ontology • Common Logic (language and upper-level ontology) • Process Specification Language • Space and time ontologies • Domain-specific ontologies, such as health care, taxation, shipping, … Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  5. An Example Upper Ontology Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  6. OASIS Universal Business Language (UBL) Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  7. Standardization Pros • Where standards exist and are agreed upon, they (even if imperfect) • Save time and improve effectiveness • Enable specialized tools where appropriate • Improve longevity of solution over time and space • Suggest directions for improvement Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  8. Standardization Cons • Standardization of domain-specific ontologies is • Cumbersome • Often out of date by the time completed • Difficult to maintain • Often violated for competitive reasons Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  9. Standardization: Proposed Approach • Always use standard languages (XML, RDF, OWL, …) • Take high-level concepts from standard models: • Domain experts are not good at KR • Lot of work in the best of cases • Work toward consensus in chosen domain Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  10. Inducing Common Ontologies • Instead of beginning with a standard, develop consensus to induce common ontologies • Assumptions: • No global ontology • Individual sources have local ontologies • Which are heterogeneous and inconsistent • Motivation: Exploit richness of variety in ontologies • To see where they reinforce each other • To make indirect connections (next page) Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  11. Alternative Approaches We may construct large ontologies by • Inducing classes from large numbers of instances using data-mining techniques • Building small specialized ontologies and merging them (Ontolingua) • Top-down construction from first principles (Cyc and IEEE SUO) Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  12. Aside: Categorizing Information Consensus is driven by practical considerations • Should service providers classify information where it • Belongs in the “correct” scientific sense? • Where users will look for it? • Case in point: If most people think a whale is a kind of fish, then should you put information about whales in the fish or in the mammal category? Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

  13. Section Summary • For large-scale systems development, agreeing upon acceptable ontologies is nontrivial • Standardization helps, but suffers from key limitations • Consensus approaches seek to figure out acceptable ontologies based on available small ontologies • Should always use standards for representation languages Service-Oriented Computing: Semantics, Processes, Agents - Munindar Singh and Michael Huhns

More Related