1 / 7

Statistical Assumptions for SLR

Statistical Assumptions for SLR. Recall, the simple linear regression model is Y i = β 0 + β 1 X i + ε i where i = 1, …, n . The assumptions for the simple linear regression model are: 1) E ( ε i )=0 2) Var( ε i ) = σ 2 3) ε i ’s are uncorrelated.

Download Presentation

Statistical Assumptions for SLR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Statistical Assumptions for SLR • Recall, the simple linear regression model is Yi = β0 + β1Xi +εi where i = 1, …, n. • The assumptions for the simple linear regression model are: 1) E(εi)=0 2) Var(εi) = σ2 3) εi’s are uncorrelated. • These assumptions are also called Gauss-Markov conditions. • The above assumptions can be stated in terms of Y’s… week 2

  2. Possible Violations of Assumptions • Straight line model is inappropriate… • Var(Yi) increase with Xi…. • Linear model is not appropriate for all the data… week 2

  3. Properties of Least Squares Estimates • The least-square estimates b0 and b1 are linear in Y’s. That it, there exists constants ci, di such that , • Proof: Exercise.. • The least squares estimates are unbiased estimators for β0and β1. • Proof:… week 2

  4. Gauss-Markov Theorem • The least-squares estimates are BLUE (Best Linear, Unbiased Estimators). • Of all the possible linear, unbiased estimators of β0and β1 the least squares estimates have the smallest variance. • The variance of the least-squares estimates is… week 2

  5. Estimation of Error Term Variance σ2 • The variance σ2 of the error terms εi’s needs to be estimated to obtain indication of the variability of the probability distribution of Y. • Further, a variety of inferences concerning the regression function and the prediction of Y require an estimate of σ2. • Recall, for random variable Z the estimates of the mean and variance of Z based on n realization of Z are…. • Similarly, the estimate of σ2 is • S2 is called the MSE – Mean Square Error it is an unbiased estimator of σ2 (proof in Chapter 5). week 2

  6. Normal Error Regression Model • In order to make inference we need one more assumption about εi’s. • We assume that εi’s have a Normal distribution, that is εi ~ N(0, σ2). • The Normality assumption implies that the errors εi’s are independent (since they are uncorrelated). • Under the Normality assumption of the errors, the least squares estimates of β0and β1 are equivalent to their maximum likelihood estimators. • This results in additional nice properties of MLE’s: they are consistent, sufficient and MVUE. week 2

  7. Example: Calibrating a Snow Gauge • Researchers wish to measure snow density in mountains using gamma ray transitions called “gain”. • The measuring device needs to be calibrated. It is done with polyethylene blocks of known density. • We want to know what density of snow results in particular readings from gamma ray detector. The variables are: Y- gain, X – density. • Data: 9 densities in g/cm3 and 10 measurements of gain for each. week 2

More Related