1 / 40

Tartu Ülikool , 2 3 . mai 200 3

Tartu Ülikool , 2 3 . mai 200 3. Otsustusdiagrammid e kasutamisest digitaalsüsteemide diagnostika s Raimund Ubar TTÜ, Arvutitehnika instituut. Otsustusdiagrammid e digitaalsüsteemide diagnostika. Ülevaade: Digitaalsüsteemide diagnostika põhiülesanded Otsustusdiagrammid: BDD ja SSBDD

amena
Download Presentation

Tartu Ülikool , 2 3 . mai 200 3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tartu Ülikool, 23. mai 2003 Otsustusdiagrammide kasutamisest digitaalsüsteemide diagnostikasRaimund UbarTTÜ, Arvutitehnika instituut

  2. Otsustusdiagrammide digitaalsüsteemide diagnostika Ülevaade: • Digitaalsüsteemide diagnostika põhiülesanded • Otsustusdiagrammid: BDD ja SSBDD • Boole’i operatsioonid (SS)BDD-dega • SSBDD-de omadused • Kõrgtaseme otsustusdiagrammid (DD-d) • register-edastuste tase • käsusüsteemi tase • Mitmedimensionaalsed otsustusdiagrammid

  3. Introduction – Test Tools Test experiment Test result System Fault simulation Fault diagnosis System model Fault table Test Go/No go Located defect Test generation Test tools

  4. Introduction – Test Tasks Fault Diagnosis and Test Generation as direct and reverse mathematical tasks: dy = F(x1, ... , xn) F(x1 dx1 , ... , xndxn) dy = F(X, dX) • Direct task: • Test generation: dX,dy = 1 given, X = ? • Reverse task: • Fault diagnosis: X,dy given, dX = ? • Fault simulation: X,dy = 1 given, dxk = ? Fault Simulationis aspecial case of fault diagnosis

  5. Binary Decision Diagrams • 1959 - Lee C.Y. - Description of BF by graph-like structures • 1967 - Ehrenfeucht A., Orlowska E - Fast evaluation of BE • 1971 - Schneider B.N. - Representing BF by graphs (Abstract) > AG • 1974 -Dipl. Thesis, TTU (Vaher/Ubar) - Fast evaluation of BE • 1975 -Breitbart Y, Reiter A. - Fast evaluation of BE (Compiler design) • 1976 - Ubar R. - Test generation > AG • 1976 - Kuzmin V.A. - Complexity evaluation of BF by BP • 1977 - Kuznetsov O.P. - Realization of BF by programmes • 1977 - Akers S.B. -Test generation, introduced the name BDD • 1981 - Thayse A. - BDDs in other fields: CAD, program optimization, AI • 1986 - Bryant R.E. - manipulation of BDDs • 1990 - Bryant R.A. - the first BDD package

  6. Binary Decision Diagrams y 1 Functional BDD x1 1 0 x2 x3 Simulation: x4 x5 0 1 1 0 1 0 0 Boolean derivative: x6 x7 0

  7. Binary Decision Diagrams BDDs for flip-flops S D Flip-Flop J JK Flip-Flop q c D q D C S C K q’ c q’ R K R RS Flip-Flop q’ J q c S S R C q’ q’ U R R U - unknown value

  8. Elementary BDDs Elementary BDDs: AND x1 x1 x2 x1 x2 x3 y & x2 y x3 + Adder x3 x1 OR x2 x1 y 1 y x1 x2 x3 x3 x2 x2 x3 x3 NOR x1 x2 y x1 x2 x3 1 x3

  9. Building a SSBDD for a Circuit Structurally Synthesized BDDs: DD-library: y a b Given circuit: x1 x1 x22 a a b x21 & x2 y x21 x3 1 x22 & SSBDD x3 Superposition of DDs b y x22 x22 a y x1 Compare to x3 x3 Superposition of Boolean functions: x21 b a

  10. Boolean Operations with BDDs x1 y x22 x1 AND-operation: a x21 & x2 y = e  g x3 x21 1 x22 e & x3 b y x4 x52 x4 c x6 x51 x51 & x5 g 1 x52 OR-operation: & x4 x1 y x52 x6 x22 d y = e  g x6 x51 x3 x21

  11. Boolean Operations with BDDs Boolean function: Inverted function: y = x1x2 x3 y = x1x2 x3 = (x1 x2) x3 y y x1 x2 x1 x3 x3 x2 Dual function: Inverted dual function: y * = x1x2 x3 y*= (x1 x2) x3 y * y* x1 x2 x1 x3 x3 x2

  12. BDD and DNF/KNF Boolean function:y= x1x2 x3 (x4  x5x6) Each 1-path represents a term in the DNF, each 0-path represents a term in the KNF y x1 x2 y x1 x2 x3 x4 x3 x4 x5 x6 x5 x6 1 0 x1x4x5 = 1 x3x5x6 = 1

  13. Transformation Rules for SSBDDs SSBDD BOOLEAN ALGEBRA Exchange of nodes: Commutative law: y y y = x1 x2= x2 x1 x1 x2 = x2 x1 Node passing: Idempotent law: y y x1 x1 y = x1 x1 x2 = = x1 x2 = x1 x1 x2 x2

  14. Transformation Rules for SSBDDs SSBDD BOOLEAN ALGEBRA Node passing: Absorption law: y y x1 x1 y = x1 x1x2 = x1 = x1 x2 x1 x2 Distributive law: y y x1 x1 x2 x2 y = x1x2  x1x3= = x1(x2  x3) = x1 x1 x3 x3

  15. Transformation Rules for SSBDDs SSBDD BOOLEAN ALGEBRA Superposition: y y y z x1 x1 Assotiative law: x3 z x2 = = y = x1 (x2  x3) = = (x1  x2)  x3 z z x1 x2 x3 x2 x3

  16. Transformation Rules for BDDs Change-over switching of nodes: Removing subgraphs: y y x1 x2 x1 x3 = y x1 x2 x3 x2 = x1 x3 Joint use of subgraphs: y y y x1 x2 x1 x3 x1 x3 = = x3 x2 x2 x2

  17. Macro 1 y & d 2 73 6 & 71 a 1 & e 3 72 7 b 4 5 1 y & 5 73 c 6 71 72 2 0 & & & Representing by SSBDD a Circuit Structurally synthesized BDD for a subcircuit (macro) To each node of the SSBDD a signal path in the circuit corresponds y = cyey = cyey = x6,e,yx73,e,y deybey y = x6x73  ( x1  x2 x71) ( x5 x72)

  18. SSBDDs vs. BDDs Advantages of SSBDDs compared to the BDDs: • Complexity explosion is avoided • The number of nodes is linear with the circuit size (determined by the number of paths in macros) • Test-specific structural features can be represented • Each node represent a signal path in the circuit • Faults of the circuit are directly represented in SSBDDs • Circuit’s dynamic (hazards, risk, delays) can be investigated with SSBDDs • Processing speed can be increased due to special properties of SSBDDs • Test generation (search space can be reduced) • Fault simulation (the speed of fault analysis can be increased) • Fault diagnosis (minimization of experiments easily controlled) Disadvantage:SSBDDs cannot be minimized

  19. N A B SSBDDs vs. BDDs Increasing the Speed of Test Generation with SSBDDs Task: Activate a path to 1 Result: Tracing is forced in nodes 1,9,10  Output 0 Another trials possible from 2,3,4  Not needed Property of SSBDD: 1 9 11 4 1 5 2 3 Breake search here 7 8 6 Theorem: In SSBDD there exists always a path between the two successors A and B of N, either from A to B or from B to A 10 0

  20. Macro 1 & d 2 & 71 a & e 3 72 7 b 4 y & 5 73 c 6 & & & SSBDDs vs. BDDs Increasing the Speed of Fault Simulation with SSBDDs Theorem: If a path in SSBDD is activated by a test pattern to 0 (or 1), then no faults can be detected by this pattern at nodes left in the oposite direction 1 (or 0) Example: y 73 6 1 5 1 71 72 2 The activated path is shown in bold The output value is 1 No need of fault simulation in nodes 6 and 1

  21. SSBDDs vs. BDDs Increasing the Speed of Fault Location with SSBDDs Circuit under guided probing: Error signal traced Error detected Where to continue pinpointing? ... C Theorem: If a path in SSBDD is activated to 0 (or 1), and an error is observed on the output, then no faults at nodes left in oposite direction 1 (or 0) can be the causes of the error SSBDD for the component C: 1 8 6 4 1 7 5 2 3 The activated path is shown in bold The output value is 0 Faults can be detected only in nodes 1,6,7

  22. SSBDDs vs. Gate-Level Models Advantages of SSBDDs compared to the Gate-Level Models: • Complexity reduction • Faults domain: each node represent all the faults of the corresponding signal path (fault collapsing) • Time domain: each node represent the delay of the corresponding signal path • Hierarchical approaches are easy • SSBDD for a subcircuit can be represented as a macro • No special manipulation procedures for different macros are needed • No model libraries for different tools are needed

  23. Extentions of BDDs • 1980 - Multi-Terminal DDs for uncertainty in sequential circuits (1993) • Automatika I Telemehanika, No5, 1980 • 1981 - Word-Level DDs for Data-Paths • Nachrichtentechnik-Elektronik 31 (1981, H.1) • 1983 - DDs with multi-output internal nodes • Proceedings of TTU No. 550 • 1983 - Vector DDs for output behaviour of microprocessors • Fault-Tolerant Computing Symposium, Milano Recent papers on high-level DDs: • R.Ubar. Test Synthesis with Alternative Graphs. J.of IEEE Design and Test of Computers. Spring, 1996, pp.48-59 • R.Ubar. Combining Functional and Structural Approaches in Test Generation for Digital Systems. J. of Microelectronics and Reliability, Elsevier Science Ltd. Vol. 38, pp.317-329, 1998 • J.Raik, R.Ubar. Fast Test Pattern Generation for Sequential Circuits Using Decision Diagram Representations. J. of Electronic Testing. Kluwer Acad. Publ.Vol. 16, No. 3, pp. 213-226, 2000. • R.Ubar, A.Morawiec, J.Raik. Back-Tracing and Event-Driven Techniques in High-Level Simulation with DDs. IEEE ISCAS’2000 Conf., Geneva, May 28-31, 2000, Vol. 1, pp. 208-211.

  24. New features: representing vectors multi-output internal nodes multi-terminal BDDs 3 1 4 1 5 1 q’ q.y 2.1 x1 Res 6 0 x1 1 3.0 7 2 8 1 x2 4.1 2 1.0 0 9 3 x2 5.0 4 10 6.1 11 1 5 x1 12 0 6 x1 1.0 * 13 *.0 Generalization of MTBDDs for FSMs State Transition Diagram: Res 1/0 x1 3/0 2/1 x2 4/1 5/0 x1 6/1

  25. High-Level Decision Diagrams R Superposition of High-Level DDs: A single DD for a subcircuit 2 0 y # 0 4 1 R 2 M1 0 0 2 y y R + R 3 1 1 2 R2 1 IN + R 2 1 IN 2 R 1 3 0 y R * R 2 R2 +M3 1 2 1 IN* R 2 M2 Instead of simulating all the components in the circuit, only a single path in the DD should be traced

  26. Faults and High-Level Decision Diagrams K: (If T,C) RD F(RS1,RS2,…RSm),  N RTL-statement: • Terminal nodes • RTL-statement faults: • data storage, • data transfer, • data manipulation faults • Nonterminal nodes • RTL-statement faults: • label, • timing condition, • logical condition, register decoding, • operation decoding, • control faults

  27. High-Level Decision Diagrams Register-Level Data Path:

  28. High-Level Decision Diagrams Representing transparency functions in Decision Diagrams

  29. DD Synthesis from Behavioral Descriptions Procedural description of a microprocessor BEGIN Memory state: M Processor state: PC, AC, AX Internal state: TMP Instruction format: IR = OP. A. F0. F1. F2. Execution process: EXEC: BEGIN DECODE OP  ( 0: AC AC + MA 1: M[A] AC, AC  0 2: M[A] M[A]+ 1, IF M[A]= 0 THEN PC  PC + 1 3: PC  A ...................................... 7: IF F0 THEN AC  AC + 1 IF F1 THEN IF AC = 0 THEN PC  PC + 1 IF F2 THEN (TMP  AC, AC  AX, AX  TM’) END END

  30. DD Synthesis from Behavioral Descriptions Symbolic execution tree: Start OP=7 OP=0 ... F0=1 1 OP=3 F0=0 AC = AC + 1 AC = AC + M [A] OP=1 PC = A F1=1 F1=0 2 OP=2 AC0 5 AC=0 M [A] = AC, AC = 0 F2=0 PC = PC + 1 F2=0 6 F2=0 F2=1 F2=1 11 M [A] = M [A] + 1 F2=1 9 M[A]=0 3 AC = AX, AX = AC M[A]=1 AC = AX, AX = AC PC = PC + 1 7 AC = AX, AX = AC 10 4 8

  31. DD Synthesis from Behavioral Descriptions Generation of nonprocedural descriptions via symbolic execution Terminal contexts

  32. DD Synthesis from Behavioral Descriptions Decision Diagram for AC 0 AC+M [A] AC OP 1 #0 2,3 AC 7 0 0 F0 F2 1 1 AX AC+1

  33. Data Path M A ADR B C z 1 MUX 1 z CC z 2 MUX 2 y x CON D Control Path d l / ¢ q q FF High-Level Decision Diagrams DD-model for a digital system: Digital system:

  34. Begin s 0 A = B + C s 1 1 0 x A Ø A = A + 1 B = B + C s s 4 2 1 0 0 1 x x A B Ø Ø Ø C = C B = B C = C s 3 0 1 0 1 x x C C Ø Ø A = C + B A = A + B + C C = A + B s 5 END High-Level Decision Diagrams DD-model for a digital system: Digital system:

  35. I1: MVI A,D A  IN I2: MOV R,A R  A I3: MOV M,R OUT  R I4: MOV M,A OUT  A I5: MOV R,M R  IN I6: MOV A,M A  IN I7: ADD R A  A + R I8: ORA R A  A  R I9: ANA R A  A  R I10: CMA A,D A  A Test Generation for Processors High-Level DDs for a microprocessor (example): DD-model of the microprocessor: Instruction set: 1,6 A I IN 3 2,3,4,5 I R OUT A 4 7 A + R A 8 2 A  R I A R 9 A  R 5 IN 10  A 1,3,4,6-10 R

  36. Test Generation for Processors High-Level DD-based structureofthe microprocessor (example): DD-model of the microprocessor: 1,6 A I IN IN 3 R 2,3,4,5 I R OUT A 4 7 A + R I A OUT 8 2 A  R I A R 9 A  R 5 A IN 10  A 1,3,4,6-10 R

  37. Test Generation for Processors Scanning test program for adder: Instruction sequence T = I5 (R)I1 (A)I7 I4 for all needed pairs of (A,R) DD-model of the microprocessor: 1,6 A I IN I4 3 OUT 2,3,4,5 I R OUT A I7 A 4 7 A + R I1 A A 8 R IN(2) 2 A  R I A R I5 R 9 A  R 5 IN(1) IN Time: 10 t t - 1 t - 2 t - 3  A 1,3,4,6-10 Observation Test Load R

  38. Test Generation for Processors Conformity test program for decoder: Instruction sequence T = I5 I1 DI4 for all DI1 -I10 at given A,R,IN DD-model of the microprocessor: 1,6 I A IN Data generation: 3 2,3,4,5 I R OUT A 4 7 A + R A 8 2 A  R I A R 9 A  R 5 IN 10  A 1,3,4,6-10 Data IN,A,R are generated so that the values of all functions were different R

  39. Vector Decision Diagrams Vector Decision Diagrams: 0 A 0 0 C ¢ B’ + C’ q M=A.B.C.q i ¢ q x A’ + B’ ¢ ¢ q B + C i A B q #1 1 0 #5 x Ø ¢ A + 1 A 1 0 A 1 C Ø x A’ + 1 i 3 1 A Ø i C’ q x q Ø ¢ ¢ C + B C #4 #3 4 0 0 1 B x x ¢ ¢ ¢ A + B + C C A B’ + C’ 0 0 A i q x x A’ + B’+C’ i A C 1 1 B #2 2 x ¢ ¢ ¢ B + C q B Ø B’ A q 4 0 #5 3 0 C 0 x Ø ¢ B A’ + B’ x ¢ q # A q 1 i B C q Ø B’ i 2 0 1 0 #5 q x ¢ x # q ¢ ¢ 4 A + B C B A #5 1 A 1 Ø B’ + C’ 1 3 i 0 1 C q x # 2 Ø C’ i C #5 q 4 0 2 4 1 #5 x # 5 x B Ø ¢ C A 1 3,4 # 3 Concurrent simulation in space: j – adressing variable

  40. Two-Dimensional Decision Diagrams DDs for representing microprocessor output behaviour A 1 OUT = AB.DB (t) AB 2 i PC + 1 0 1 1 t I I 1 3 AB 3 i PC + 2 1 A 2 DB L PC + 1 DB(t=2) 2 0, 2 2 t I i i INP (H,L) 2 1 2 AB PC + 2 H DB(t=3) AB SHLD Instruction: 1, 3 2 t i I .I .I = 0.4.2 1 1 2 3 Concurrent simulation: in space: i – adressing variable in time: t – adressing variable ¬ (DB(t=3).DB(t=2)) L 2 4 t A 1 ¬ ((DB(t=3).DB(t=2)) + 1) H 3 A 2 DB i 4 L I I I i 1 2 3 1 0 1 2 4 5 7 AB INP space DB H 5 i time 1 t AB INP + 1

More Related