1 / 15

Project Deliverables

Project Deliverables. CEN 6017 - Engineering of Software 2. Second Semester Deliverables (anticipated). Deliverable #6 – User Interface Design and Revisited Analysis Modeling Deliverable #7 – Layered Architectural Design Deliverable #8 – Detailed Design - Iteration Planning

aminia
Download Presentation

Project Deliverables

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ProjectDeliverables CEN 6017 - Engineering of Software 2

  2. Second Semester Deliverables(anticipated) • Deliverable #6 – User Interface Design and Revisited Analysis Modeling • Deliverable #7 – Layered Architectural Design • Deliverable #8 – Detailed Design - Iteration Planning and Use Case Realizations – Context Diagrams only. • Deliverable #9 – Subsystem Design – Interaction Diagrams (both) and VOPC diagrams. • Deliverable #10 –Class Design and Implementation #1; First Functional Demonstration • Deliverable #11 – Final Deliverable: Complete Implementation Model and Demonstration including client testing.

  3. Deliverable 6due: 1/23/2012 Start of class(present on 1/25) • Two Key Components • 1. Revisiting Analysis Model • Use Case Specifications – Revisited • Interaction Diagrams – Revisited • 2. User Interface

  4. General Details on Deliverable 6 • Don’t forget peer reviews. This is important. If you cannot be present on the date of the deliverable, give your review (in a sealed envelope) to a team member or physically drop it off in my office prior to class date/time. • Peer reviews are due on the date of this deliverable. • I will be accessing your deliverable via RTC. More later. We are updating licenses now. • Deliverable is to include: • Executive Summary, • Statement of Work, (who is tasked with what) • Revisited Analysis Model – ‘final form’ • Use Case Specs • Interaction Diagrams • Traceability statement (more later) via Traceability Matrices • User Interface Prototype (details ahead)

  5. 1. Details on Revisiting Analysis Model (1 of 2) • Ensure: • Use Case specifications are to have hyperlinks to the Domain Model or to the definitions sections in your Glossary (domain model preferred). These links are to be relative and must be accessible on my computer. • Use Case Specifications are to provide a meaningful level of detail to support follow on design. If these specs are too high level and vague, they are unsatisfactory and will not support an effective design; too low level, and they constrain design. • All Alternatives and Exceptions are to contain hot links as appropriate, a concluding action (return to Step n or Use-case terminates here), and the complete set of behaviors. • There are to be no database references in your use-case specifications unless these refer to an external system.

  6. 1. Details on Revisiting Analysis Model (2 of 2) • Interaction Diagrams – Sequence. • Ensure these are correct. Additional example(s) may be found on my web page. (I have eliminated ambiguous examples and have inserted better examples) The use-case specification text should be inserted down the left margin of your sequence diagrams approximately in line with the objects that realize the behaviors to the right. This effort supports traceability. • Ensure control classes are indeed control (orchestrate) and entity classes provide coreresponsibilities and functionality. (Previous deliverables indicated that there was a real disconnect in understanding what these analysis class behaviors should be. In some cases, entity responsibilities were allocated to control classes.) Boundary classes are not to be expanded into ‘forms’ or ‘windows’ or anything resembling implementation. Remember, these will likely not morph into design classes.

  7. 2. User Interface (1 of 2) • I should be able to access (run through the templates) the UI within your deliverable submitted to me and ‘execute it’ successfully. (you will demo to the class) • You must demo the ability to navigate from screen to screen to pursue some scenario from a use case. (I will select a scenario from your use case specs.) • A client should NOT have to hunt and peck and wonder… • Recognize that some (a few) of the windows / displays will be / may be hard coded and that demonstrated functionality may not be totally backed up with implemented code or efficient algorithms. But the implied functionality must be clear. This design should contain much more implied functionality than in Deliverable 3.

  8. 2. User Interface – (2 of 2) • This user interface should demonstrate the vast majority of key items of functionality as found in the use cases. • In your classroom presentation, you are to demonstrate how your UI satisfies required functionality. • Utility and Usability Principles as cited in the lecture slides and your text will be emphasized in evaluation. • Verify your UI by ‘running it’ against your use cases to ensure all functionality is captured.

  9. Deliverable 7due: Wed, February 15, 2012 • Deliverable 7 will require significant team work. • Management Component: Your package to me (please provide a hard copy) should start off with an Executive Summary and a Statement of Work. The Exec Summary is an overview of the contents of the deliverable. Likely a few paragraphs will suffice. The Statement of Work (SOW) should contain the distribution of work and the estimated time in hours that each of you spent on your tasking. The SOW may take a page of text to properly capture. (Do not forget to deliver your Peer Evaluations on the due date via email to me). Your designs will be presented. • Artifacts Component: The revisited User Interface hard copy should be included in your deliverable. The layered architectural design model described in the slides ahead should capture your software architecture. This is the bulk of the deliverable. • Implementation: will follow in subsequent deliverables

  10. Deliverable #7 – Layered Architecture • Caveat: If possible, we will include the aforementioned work items in Team Concert. • Layers: • You are to design a layered architectural prototype to accommodate your application requirements. • The named layers are to consist of major subsystems and packages, their contents (other subsystems, packages, etc.). All component dependencies (coupling) are to be indicated via appropriate UML connectors. • The main purpose and suggested contents of each of your layers must be spelled out in a text-accompanying document. (see lecture slides for examples) • Your choice (decision) of architectural pattern should be fully discussed using the eleven design principles; that is, how does your choice support the design principles enumerated upon in the lecture slides and your textbook. (Word document, please)

  11. Deliverable #7 – Layered Architecture • Subsystems / Packages. • For each subsystem, you should provide a single sentence citing the purpose of the subsystem (that is, how it ‘coheres’). • You should provide a rationale explaining exactly why specific subsystems / packages were placed in their respective layers; that is, a record of your design decisions. (Cohesion) • The detailed contents of the subsystems / packages (subsystems, packages, classes and their associations / dependencies) of each design element should be supplied at this time (cohesion). This means that classes, for example, constituting a subsystem or package, must have their properties named and methods (responsibilities) cited – as much as possible. • You should NOT INCLUDE the detailed description of properties (that is, float, char, integer, String, etc.) nor the number and types of parameters for the methods nor the algorithms, etc. used by the methods. Only named methods / return items. • These models should be realized in SmartDraw or other graphical rendering. Supplement this layered model separately as needed in Word.

  12. Deliverable #7 – Layered Architecture • Please note that your architectural modeling (layers and their components, etc.) should be captured as your Logical View - Design Model, <Layer-Name> Layer. • The <Layer-Name> Layer has subfolders for packages, subsystems, etc., which you will like (I hope). • There are mechanisms for, say, a subsystem, to name the subsystem and site the dependencies and interfaces related to this subsystem. • Approximately what I’d like your deliverable to look like:

  13. Architectural Layers – the basic idea Presentation Layer … Subsystem name Subsystem name Subsystem name However many Application Layer … Subsystem name However many Package name Subsystem name Middleware Layer … However many Subsystem name Subsystem name Package name … additional layers as you decide. Name each of your layers (probably four…), subsubsystems, packages, classes, etc. etc. See next page.

  14. Components and Their Interfaces You need to communicate the interface of each component by taking eachcomponent (subsystem) and showing its responsibilities showing the interface. (Note the stereotype below) You will need to show the arguments (as much as possible) that are part of the interface signature. Please note that a package has no specific interface and thus the classes in a package needs to explicitly show its public interface. Maintain Database (name interface) <<interface>> Addrec(xxxx, xx) bool UpdateRec(xx, xx) int DeleteREc(xxxxxx) etc……

  15. Design Elements in Each Component You may combine this drawing with the previous drawing; otherwise, make this separate. For each component, you should also – as much as possible - include the classes and their properties/methods that are needed to ‘realize’ the interface. Recognize those signatures in the interface must be accommodated by the classes or other components (along with other dependencies ‘they’ might have) in the subsystem. You may also show any dependencies these objects will experience with realizing the interface… Maintain Database Subsystem Add properties, methods, and anything else that will assist in realizing the interface. (name interface) <<interface>> … 1..2 Addrec(xxxx, xx) bool UpdateRec(xx, xx) int DeleteREc(xxxxxx) etc…… * … … Showing a dependency between this object (in sub) and an object in another design element (package, here) We are saying that the interface is realized by this combination of objects and dependencies. XXXX Package

More Related