590 likes | 1.43k Views
Structural Analysis-I. Dr. Ali Tayeh. First Semester 2010-2011. Lecture 5. Trusses. Trusses. هي عبارة عن منشاة متماسكة مستوي مكون من عدد من العناصر المتصلة يبعضها عند نهاياتها بمفصل أملس. تكون القوي الخارجية المؤثرة علية وردود الافعال كلها في مستوي واحد وتؤثر عند مفاصل الاتصال.
E N D
Structural Analysis-I Dr. Ali Tayeh First Semester 2010-2011
Lecture 5 Trusses
Trusses هي عبارة عن منشاة متماسكة مستوي مكون من عدد من العناصر المتصلة يبعضها عند نهاياتها بمفصل أملس. تكون القوي الخارجية المؤثرة علية وردود الافعال كلها في مستوي واحد وتؤثر عند مفاصل الاتصال. تكون المفاصل مبرشمة أو ملتحمة بواسطة وصلات براشيم أو لحام .
فرضيات مبسطة للتحليل جميع اعضاء الجمالون Truss متصلة يبعضها البعض بواسطة مفاصل عديمة الاحتكاك بحيث تنقل القوة من عنصر لأخر وينعدم انتقال العزم. الاحمال الخارجية تحمل على الجمالون عند المفاصل. محور كل عضو من الاعضاء المتلاقية عند مفصل متقاطعة في نقطة.
Methods of Truss Analysis Method of Joints طريقة المفاصل. Method of Section طريقة القطع. Graphical Method طريقة الرسم.
Classification of coplanar Truss 1. Simple Truss
2. Compound Truss عندما يتصل جمالون بسيط مع اخر بسيط بواسطة عنصر ربط link member
3. Complex Truss لا تنطبق علية شروط الجمالون البسيط ولا المركب
Determinacy For plane truss If b+r = 2j statically determinate If b+r > 2j statically indeterminate Where b = number of bars r = number of external support reaction j = number of joints
Stability For plane truss If b+r < 2j unstable The truss can be statically determinate or indeterminate (b+r >=2j) but unstable in the following cases: External Stability: truss is externally unstable if all of its reactions are concurrent or parallel
Internal stability: Internally stable Internally unstable b + r = 2 j -------Statically determinateb + r > 2 j -------Statically Indeterminateb + r < 2 j -------Unstable Internally unstable
Classify each of the truss as stable , unstable, statically determinate or indeterminate. b + r = 2 j -------Statically determinateb + r > 2 j -------Statically Indeterminateb + r < 2 j -------Unstable b = 19 , r = 3 , j = 11 b = 15 , r = 4 , j = 9 b + r = 19 + 3 = 22 b + r = 15 +4 = 19 2 j = 2 (11) = 22 2 j = 2 (9) = 18 Statically determinate & Stable. Statically Indeterminate & Stable.
b + r = 2 j -------Statically determinateb + r > 2 j -------Statically Indeterminateb + r < 2 j -------Unstable b = 9 , r = 3 , j = 6 b = 12 , r = 3 , j = 8 b + r = 9 + 3 = 12 b + r = 12 + 3 = 15 2 j = 2 (6) = 12 2 j = 2 (8) = 16 Statically determinate & Stable. Unstable
The Method of Joints STEPS FOR ANALYSIS 1. If the support reactions are not given, draw a FBD of the entire truss and determine all the support reactions using the equations of equilibrium. 2. Draw the free-body diagramof a joint with one or two unknowns.Assume that all unknown member forces act in tension (pulling the pin) unless you can determine by inspection that the forces are compression loads. 3. Apply the scalar equations of equilibrium, FX = 0 and FY = 0, to determine the unknown(s). If the answer is positive, then the assumed direction (tension)is correct, otherwise it is in the opposite direction (compression). 4. Repeat steps 2 and 3 at each joint in succession until all the required forces are determined.
Example 1 Solve the following truss
Group Work Determine the force in each member
Zero Force Member 1- If a joint has only two non-collinear members and there is no external load or support reaction at that joint, then those two members are zero-force members non-collinearغير واقعين على نفس الخط
Zero Force Member 2- If three members form a truss joint for which two of the members are collinear and there is no external load or reaction at that joint, then the third non-collinear member is a zero force member.
Example 2 Find Zero force member of the following truss