1 / 60

流 變 學 之 簡 介 與 應 用 An Introduction to Rheology and Its Applications

流 變 學 之 簡 介 與 應 用 An Introduction to Rheology and Its Applications. Complex Fluids & Molecular Rheology Lab., Department of Chemical Engineering. 課程大綱. I. 流變現象與無因次群分析 II. 基礎量測系統與功能 III. 影響流變行為的主要因素 IV. 實驗分析原理與技術.

amy-downs
Download Presentation

流 變 學 之 簡 介 與 應 用 An Introduction to Rheology and Its Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 流 變 學 之 簡 介 與 應 用An Introduction to Rheology and Its Applications Complex Fluids & Molecular Rheology Lab., Department of Chemical Engineering

  2. 課程大綱 I. 流變現象與無因次群分析 II. 基礎量測系統與功能 III. 影響流變行為的主要因素 IV. 實驗分析原理與技術 Principal References: “Dynamics of Polymeric Liquids: Volume 1 Fluid Mechanics” by R.B. Bird et al., 2nd Ed., Wiley-Interscience (1987)

  3. Scope of Rheology • 計算流變 • 流體的不穩性 • 泡沫、乳液、界面活性劑 • 食品、生物材料 • 材料加工 • 微結構模擬 • 奈料科技、微流體 • 非牛頓流體力學 • 融熔高分子 • 高分子溶液 • 流變量測、實驗方法 • 固體、複合物 • 懸浮物、膠體 • 應用流變、一般論文 • Mini-symposia organized in the 「2004 世界流變會議」 • A rheologist should be familiar with the following subjects • 輸送現象 • 統計力學 • 高分子物理 • 膠體科學 • 分子動態理論

  4. 什 麼 是 流 變(Rheology)? • Rheology is the science of fluids. More specifically, the study of Non-Newtonian Fluids • 流體 • 為何需要流變學家? • Macromolecules are easily deformable • Chain interactions are complicated • Processings typically involve flows • Try to make Rheology not an issue Newton’s law of viscosity 牛頓流體 - 水、有機小分子溶劑等 非牛頓流體 - 高分子溶液、膠體等 黏度η為定值 黏度不為定值 (尤其在快速流場下)

  5. I.流 變 現 象 與 無 因 次 群 分 析 • 非牛頓流體的三大特徵 • 二次流與不穩定現象 • 特徵時間與無因次群分析

  6. 非 牛 頓 流 體 的 特 徵 • 非牛頓黏度(Non-Newtonian Viscosity) - Shear Thinning Flow curve for non-Newtonian Fluids 牛頓流體 (甘油加水) 非牛頓流體 (高分子溶液)

  7. 正向力差的效應(Normal Stress Differences) - Rod-Climbing 牛頓流體 (水) 非牛頓流體 (稀薄高分子溶液)

  8. 記憶效應(Memory effects) -Elastic Recoil - Open Syphon Flow

  9. 牛 頓 流 體 的 不 穩 定 性: 慣 性 效 應 Concentric Cylinders Onset of Secondary Flow Ta (or Re) plays the central role! Laminar Secondary Turbulent Taylor vortices Turbulent

  10. 非 牛 頓 流 體 的 不 穏 定 性: 黏 彈 性 效 應 “The mountains flowed before the Lord” [From Deborah’s Song, Biblical Book of Judges, verse 5:5], quoted by Markus Reiner at the Fourth International Congress on Rheology in 1963 • 收縮流道 - 描述非牛頓流體行為之程度 流體的特徵或 “鬆弛”時間 流動系統的特徵時間 剪切速率 非牛頓流體 (0.057%聚丙烯醯胺/葡萄糖 溶液) 牛頓流體 (葡萄糖漿)

  11. 流 變 性 質 的 微 觀 (分 子) 成 因 • 微觀的角度 • 流變的性質主要決定於 ● ● Deformable Small molecule Macromolecule Dilute/Entangled Polydispersity Flexibility Linear/Branched Chain interactions 流體組成性質 流場因素 Competition between relaxation & deformation rates Flow strength Flow kinematics

  12. Lubrication High-speed coating Rolling Spraying • 典型製程之流場強度範圍 Injection molding Pipe flow Chewing Extrusion Sedimentation Typical viscosity curve of a polyolefin- PP homopolymer, melt flow rate (230 C/2.16 Kg) of 8 g/10 min- at 230 C with indication of the shear rate regions of different conversion techniques. [Reproduced from M. Gahleitner, “Melt rheology of polyolefins”, Prog. Polym. Sci., 26, 895 (2001).]

  13. Secondary flow Secondary Flows and Instabilities Secondary flow around a rotating sphere in a polyacrylamide solution. [Reporduce from H. Giesekus in E. H. Lee, ed., Proceedings of the Fourth International Congress on Rheology, Wiley-Interscience, New York (1965), Part 1, pp. 249-266]

  14. Melt instability Sharkskin Melt fracture Photographs of LLDPE melt pass through a capillary tube under various shear rates. The shear rates are 37, 112, 750 and 2250 s-1, respectively. [Reproduced from R. H. Moynihan, “The Flow at Polymer and Metal Interfaces”, Ph.D. Thesis, Department of Chemical Engineering, Virginia Tech., Blackburg, VA, 1990.] [Retrieved from the video of Non-Newtonian Fluid Mechanics (University of Wales Institute of Non-Newtonian Fluid Mechanics, 2000)]

  15. Taylor-Couette flow for dilute solutions Taylor vortex R2 R1 Flow visualization of the elastic Taylor-Couette instability in Boger fluids. [http://www.cchem.berkeley.edu/sjmgrp/] [S. J. Muller, E. S. G. Shaqfeh and R. G. Larson, “Experimental studies of the onset of oscillatory instability in viscoelastic Taylor-Couette flow”, J. Non-Newtonian Fluid Mech., 46, 315 (1993).]

  16. II.基 礎 量 測 系 統 與 功 能 • 剪切流與非剪切流 • 流變儀夾具選擇與應用 • 基礎流變量測模式與功能

  17. Two standard typesof flows, shear and shearfree, are frequently used to characterize polymeric liquids 典 型 均 勻 流 場 (b) Shearfree (a) Shear Elongation rate Steady simple shear flow Shear rate Streamlines for elongational flow (b=0)

  18. The Stress Tensor y x z Elongational Flow Shear Flow Total stress tensor* Stress tensor Hydrostatic pressure forces

  19. 流 變 儀 夾 具 與 流 場 特 性 (a) Shear Pressure Flow: Capillary Drag Flows: Concentric Cylinder Cone-and-Plate Parallel Plates (b) Elongation Moving Clamps

  20. 適 用 流 場 強 度 與 濃 度 範 圍 (a) Shear Concentrated Regime Dilute Regime Homogeneous deformation:* Cone-and-Plate Concentric Cylinder Nonhomogeneous deformation: Parallel Plates Capillary (b) Elongation Moving clamps For Melts & High-Viscosity Solutions *Stress and strain are independent of position throughout the sample

  21. 基 礎 黏 度 量 測 Concentric Cylinder FIG. Concentric cylinder viscometer (homogeneous)

  22. Cone-and-Plate Instrument (From p.205 of ref 3) FIG. 1.3-4. Cone-and-plate geometry (homogeneous)

  23. Uniaxial Elongational Flow Device used to generate uniaxial elongational flows by separating Clamped ends of the sample

  24. 典 型 剪 切 流 量 測 模 式

  25. 穩 態 剪 切 流 Exp a: Steady Shear Flow Non-Newtonian viscosity η of a low-density polyethylene at several Different temperatures The first and second normal stress coefficients are defined as follows: The shear-rate dependent viscosity η is defined as:

  26. Relative Viscosity: Master curves for the viscosity and first normal stress difference coefficient as functions of shear rate for the low-density polyethylene melt shown in previous figure Intrinsic Viscosity: Intrinsic viscosity of dilute polystyrene Solutions, With various solvents, as a function of reduced shear rate β

  27. 小振幅反覆式剪切流: 黏性與彈性檢定 Exp b: Small-Amplitude Oscillatory Shear Flow Oscillatory shear strain, shear rate, shear stress, and first normal stress difference in small-amplitude oscillatory shear flow

  28. It is customary to rewrite the above equations to display the in-phase and out-of-phase parts of the shear stress Storage modulus Loss modulus Storage and loss moduli, G’ and G”, as functions of frequency ω at a reference temperature of T0=423 K for the low-density polyethylene melt shown in Fig. 3.3-1. The solid curves are calculated from the generalized Maxwell model, Eqs. 5.2-13 through 15

  29. III. 拉 伸 流 黏 度 量 測 與 特 徵 Shearfree Flow Material Functions

  30. The number average and weight average molecular weights of the samples: Monodisperse, but with a tail in high M.W. (GPC results)

  31. III. 影 響 流 變 行 為 的 主 要 因 素 • 時間-溫度疊合原理 • 分子量及其分佈的效應 • 高分子結構的影響 • 溶劑品質及其效應

  32. 時間-溫度 疊合原理(Time-Temperature Superposition) Master curves for the viscosity and first normal Stress coefficient as functions of shear rate for a low-density polyethylene melt Non-Newtonian viscosity of a low-density polyethylene melt at several different temperatures.

  33. Newtonian Power law Zero-shear viscosity, 0 According to the Reptation Theory:

  34. Time-temperature superposition holds for many polymer melts and solutions, as long as there are no phase transitions or other temperature-dependent structural changes in the liquid. Time-temperature shifting is extremely useful in practical applications, allowing one to makeprediction of time-dependent material response. WLF 溫度重整因子:

  35. WLF temperature shift parameters J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley: New York (1980).

  36. II. 分子量的效應 (Molecular Weight Dependences) For linear polymer melts Mc (=2Me): critical molecular weight Me: entangled molecular weight Plot of constant + log 0 vs. constant + log M for nine different polymers. The two constants are different for each of the polymers, and the one appearing in the abscissa is proportional to concentration, which is constant for a given undiluted polymer. For each polymer the slopes of the left and right straight line regions are 1.0 and 3.4, respectively. [G. C. Berry and T. G. Fox, Adv. Polym. Sci. 5, 261-357 (1968).]

  37. A “Time-Temperature-Molecular Weight-Concentration” Superposition: A master curve of polystyrene-n-butyl benzene solutions. Molecular weights varied from 1.6x105 to 2.4x106 g/mol, concentration from 0.255 to 0.55 g/cm3, and temperature from 303 to 333 K.

  38. III. 分子量分佈的影響 H. Munstedt, J. Rheol. 24, 847-867 (1980)

  39. IV. 高分子結構的影響 (Molecular Architecture) Linear PolymerStar PolymerPom-Pom Polymer polybutadienePolyisoprenePolyisoprene S. C. Shie, C. T. Wu, C. C. Hua, Macromolecules36, 2141-2148 (2003) C. C. Hua, H. Y. Kuo, J Polym Sci Part B: Polym Phys38, 248-261 (2006)

  40. V. 溶劑品質及其對高分子溶液的影響 (Effects of Solvent Quality for Polymer Solutions) [cf. p109] An example of viscosity versus concentration plots for polystyrene (Mw=7.14106 g/mol) in benzene at 30 C. White circles: plot of sp / c vs. c; black circles: plot of (lnr)/c vs. c. (1) Zimm-Crothers viscometer (3.710-3 ~7.610-2 dyn/cm2); (2)Ubbelohde viscometer (8.67 dyn/cm2); (3)Ubbelohde viscometer (12.2 dyn/cm2). T. Kotaka et al., J. Chem. Phys. 45, 2770-2773 (1966).

  41. Superposition of Intrinsic Viscosity Data on Various Solvent Systems: • Magnitude of intrinsic viscosity • -temperature & Solvent • Flow curve T. Kotaka et al., J. Chem. Phys. 45, 2770-2773 (1966).

  42. The solvent quality is an index describing the strength of polymer-solvent interactions. This interaction strength is a function of chemical species of polymer & solvent molecules, temperature, and pressure. Essential Scaling Laws: Scaling law of polymer size and molecular weight (<R2>end-to-end 1/2 ~ Mw).

  43. Phase Separation by Temperature-Induced Solvent Quality Changes: The (temperature, weight fraction) phase diagram for the polystyrene-cyclohexane system for samples of Indicated molecular weight. S. Saeki et al, Macromolecules 6, 246-250(1973). TU: upper critical solution temperature TL: lower critical solution temperature

  44. coil globule Coil-Globule Transition due to Changes in Solvent Quality: Poly(N-isopropylacrylamide) in water Mw = 4.45x105 g/mol, c = 6.65x10-4 g/ml Mw = 1.00x107 g/mol, c = 2.50x10-5 g/ml coil globule X. Wang et al., Macromolecules 31, 2972-2976 (1998). H. Yang et al., Polymer 44, 7175-7180 (2003).

  45. IV. 實 驗 分 析 原 理 與 技 術 • 線性黏彈性與轉換關係 • 非線性應力鬆弛與分析

  46. The Maxwell model (for melts or concentrated solutions) I. 線性黏彈性分析 (Linear Viscoelasticity) The nature of flow Relaxation modulus, G(t): The nature of fluid

  47. Other Transformation Relationships s = t-t’ η0 is zero-shear viscosity η’ is dynamic viscosity Je0 is steady- state compliance

  48. G0 The single exponential mode, eq1, with relaxation time λ=0.1 s and G0=105 Pa. G(t) (Pa) The single mode dose not fit typical data well. A logical improvement on this model is to try several relaxation times , shown as eq2. G(t) (Pa) G1 G2 G3 t (s) A spectral decomposition of five-constant model combined with eq2. G4 G5 C. H. Macosko, Rheology Principles, Measurements, and Applications, Wiley-VCH: New York (1994).

  49. G”(Pa) ω(s-1) Relaxation times and moduli for LDPE at 150℃ G’(Pa) Dynamic shear moduli for LDPE at 423 K. Data were collected at different temperatures and shifted according to time-temperature superposition. The solid curves are calculated from G(t) using eq1-2. ω(s-1) Spectral decomposition of the storage and loss moduli for LDPE at 423 K. The moduli are calculated by eq1-2 with the Gk and λk given in left table.

More Related