1 / 47

IV. EDMs & the Origin of Matter

IV. EDMs & the Origin of Matter. The cosmic baryon asymmetry Electroweak baryogenesis Electric dipole moments. Cosmic Energy Budget. Dark Matter. Dark Energy. Baryons. Stars, planets, humans…. Baryon asymmetry of the universe:. After inflation: equal amounts of matter and antimatter.

anakin
Download Presentation

IV. EDMs & the Origin of Matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IV. EDMs & the Origin of Matter • The cosmic baryon asymmetry • Electroweak baryogenesis • Electric dipole moments

  2. Cosmic Energy Budget Dark Matter Dark Energy Baryons Stars, planets, humans… Baryon asymmetry of the universe:

  3. After inflation: equal amounts of matter and antimatter Quarks & gluons become protons, neutrons…. p, n, e- become light elements & later stars, galaxies… How did we get something from nothing? e+ + e-  qqq p, n… np d +  q+ q Matter & Cosmic History

  4. Cosmic Energy Budget Dark Matter Leptogenesis: discover the ingredients: LN- & CP-violation in neutrinos Dark Energy Baryons T-odd , CP-odd by CPT theorem Stars, planets, humans… T-odd , CP-odd by CPT theorem T-odd , CP-odd by CPT theorem T-odd , CP-odd by CPT theorem Weak scale baryogenesis: test experimentally: EDMs & Higgs Boson Searches Explaining non-zero rB requires CP-violation and a scalar sector beyond those of the Standard Model (assuming inflation set rB=0) Baryon asymmetry of the universe:

  5. Big Bang Nucleosynthesis: Light element abundances depend on YB p, n, e- become light elements & later stars, galaxies… np d +  Matter & Cosmic History

  6. BBN and YB

  7. Cosmic Microwave Bcknd: Shape of anisotropies depends on YB Last  scattering: imperfect black body Matter & Cosmic History

  8. CMB and YB

  9. Anomalous B-violating processes Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Prevent washout by inverse processes Sakharov, 1967 Baryogenesis: Ingredients

  10. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Kuzmin, Rubakov, Shaposhnikov McLerran,… EW Baryogenesis: Standard Model Anomalous Processes Different vacua: D(B+L)= DNCS Sphaleron Transitions

  11. Shaposhnikov Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics 1st order 2nd order Sakharov, 1967 • CP-violation too weak • EWPT too weak Increasing mh EW Baryogenesis: Standard Model

  12. Quantum Transport CPV Chem Eq R-M et al Unbroken phase Weak Scale Baryogenesis Systematic baryogenesis: SD equations + power counting Veff (f,T): Requirements on Higgs sector extensions & expt’l probes • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase CP Violation 1st order phase transition Sakharov, 1967 Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (numerical) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD • Is it viable? • Can experiment constrain it? • How reliably can we compute it? • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Baryogenesis: New Electroweak Physics

  13. EW Precision Data: 95% CL (our fit-GAPP) LEP Exclusion Non-SM Higgs(es) ? EWSB: Higgs? • SM “background” well below new CPV expectations • New expts: 102 to 103 more sensitive • CPV needed for BAU? LEPEWWG

  14. Light RH stop w/ special Need 1st order 2nd order So that Gsphaleron is not too fast Increasing mh Computed ESM: mH < 40 GeV Stop loops in VEff mh>114.4 GeV EMSSM ~ 10 ESM :mH < 120 GeV or ~ 90 GeV (SUSY) Electroweak Phase Transition & Higgs LEP EWWG

  15. sin2q Need 1st order 2nd order Non-doublet Higgs (w / wo SUSY) • Can an augmented Higgs sector • Generate a strong 1st order EWPT ? • Allow for a heavier SM-like Higgs than in the MSSM ? • Alleviate the tension between direct Higgs search bounds and the EWPO ? • Be discovered at the LHC ? • Can its necessary characteristic probed at the LHC and a future e+e- collider ? So that Gsphaleron is not too fast Mixing Decay Increasing mH Computed ESM: mH < 40 GeV mh>114.4 GeV or ~ 90 GeV (SUSY) Electroweak Phase Transition & Higgs LEP EWWG

  16. Reduced SM Higgs branching ratios mH B.R. reduction Need 1st order 2nd order Non-doublet Higgs (w / wo SUSY) Unusual final states So that Gsphaleron is not too fast O’Connell, R-M, Wise Mixing Decay Increasing mH Computed ESM: mH < 40 GeV mh>114.4 GeV or ~ 90 GeV (SUSY) Electroweak Phase Transition & Higgs LEP EWWG

  17. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase 1st order phase transition Sakharov, 1967 “Gentle” departure from equilibrium & scale hierarchy • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Cirigliano, Lee, R-M,Tulin Baryogenesis: New Electroweak Physics 90’s: Cohen, Kaplan, NelsonJoyce, Prokopec, Turok Unbroken phase CP Violation Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD

  18. CPV phases Parameters in Lnew Bubble & PT dynamics Departure from equilibrium • Earliest work: QM scattering & stat mech • New developments: non-equilibrium QFT Systematic Baryogenesis I Goal: Derive dependence of YB on parameters Lnew systematically (controlled approximations)

  19. Unbroken phase Topological transitions Broken phase nL produced in wall & diffuses in front 1st order phase transition FWS(x)->0 deep inside bubble Systematic Baryogenesis Cohen, Kaplan, Nelson Joyce, Prokopec, Turok “snow”

  20. Unbroken phase Topological transitions … + Compute from first principles given Lnew Broken phase 1st order phase transition = + + Systematic Baryogenesis Riotto Carena et al Lee, Cirigliano, Tulin, R-M Quantum Transport Equation Schwinger-Dyson Equations

  21. Assumptions: LI Evolution is adiabatic Spectrum is non-degenerate Density is zero Evolution is non-adiabatic: vwall > 0 -> decoherence Spectrum is degenerate: T > 0 -> Quasiparticles mix Density is non-zero Quantum Transport & Baryogenesis Electroweak Baryogenesis Particle Propagation: Beyond familiar (Peskin) QFT

  22. = + + - + … + Non-equilibrium T>0 Evolution Generalized Green F’ns • Spectral degeneracies • Non-adiabaticity LI

  23. T > 0: Degeneracies M(T) GP(T) vW > 0: Non-adiabaticity Decoherence time: td ~ 1/(vW k) vW e.g., particle in an expanding box Scale Hierarchy Time Scales Plasma time: tP ~ 1/GP

  24. k = kEFF(l,Lw) n=1 n=2 n=3 Quantum Decoherence L L + DL

  25. Fast, but not too fast Work to lowest, non-trivial order in e’s Error is O (e) ~ 0.1 ed =vw (k / w ) << 1 Hot, but not too hot Cirigliano, Lee, R-M ep = Gp / w << 1 Dense, but not too dense em = m / T << 1 Systematically derive transport eq’s from Lnew Evolution is non-adiabatic: vwall > 0 -> decoherence Spectrum is degenerate: T > 0 -> Quasiparticles mix Density is non-zero Competing Dynamics CPV Ch eq Cirigliano, Lee,Tulin, R-M Quantum Transport & Baryogenesis Electroweak Baryogenesis Scale Hierarchy:

  26. GY >> other rates? (No) • Majorana fermions ? (densities decouple) • Particle-sparticle eq? • Density indep thermal widths? = + Expand in ed,p,m CP violating sources + From S-D Equations: Chiral Relaxation • SCPV • GM , GH , GY … Approximations Producing nL = 0 Strong sphalerons Riotto, Carena et al, R-M et al, Konstandin et al • Neglect O(e3) terms • Others under scrutiny • SCPV • GM , GH , GY , GSS … + R-M, Chung, Tulin, Garbrecht, Lee, Cirigliano R-M et al Objectives: • Determine param dep of SCPV and all Gs and not just that of SCPV • Develop general methods for any model with new CPV • Quantify theor uncertainties Currents Links CP violation in Higgs and baryon sectors Quantum Transport Equations

  27. M1 0 -mZ cosb sinqW mZ cosb cosqW T ~TEW : scattering of H,W from background field MN = ~ ~ T ~ TEW mZ sinb sinqW M2 -mZ sinb sinqW 0 CPV 0 -m -mZ cosb sinqW mZ cosb cosqW -m T << TEW : mixing of H,W to c+, c0 mZ sinb sinqW -mZ sinb sinqW 0 ~ ~ ~ ~ M2 MC = m Illustrative Study: MSSM Chargino Mass Matrix Neutralino Mass Matrix Resonant CPV: M1,2 ~ m

  28. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase 1st order phase transition Elementary particle EDMs: N>>1 Sakharov, 1967 Many-body EDMs: • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Engel,Flambaum, Haxton, Henley, Khriplovich,Liu, R-M Baryogenesis: New Electroweak Physics 90’s: Cohen, Kaplan, NelsonJoyce, Prokopec, Turok Unbroken phase CP Violation Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD

  29. EDMs: New CPV? • SM “background” well below new CPV expectations • New expts: 102 to 103 more sensitive • CPV needed for BAU?

  30. QCD QCD QCD EDMs: Complementary Searches Improvements of 102 to 103 Electron Neutron Neutral Atoms Deuteron

  31. Classification of CP-odd operators at 1GeV Effective field theory is used to provide a model-independent parametrization of CP-violating operators at 1GeV Dimension 4: Dimension “6”: Dimension “8”: Courtesy A. Ritz

  32. Origin of the EDMs Effective CPV Operators Energy Fundamental CP phases TeV QCD pion-nucleon coupling ( ) Neutron EDM ( ) nuclear EDMs of paramagnetic atoms ( ) EDMs of diamagnetic atoms ( ) atomic Courtesy A. Ritz

  33. mN=2.2 GeV Schiff Screening Improvements of 102 to 103 Electron ChPT for dn: van Kolck et al Atomic effect from nuclear finite size: Schiff moment Hadronic couplings Neutron EDM from LQCD: Nuclear Schiff Moment Pospelov et al: QCD QCD QCD Nuclear EDM: Screened in atoms • Two approaches: • Expand in q & average over topological sectors (Blum et al, Shintani et al) • Compute DE for spin up/down nucleon in background Efield (Shintani et al) PCAC + had models & QCD SR QCD SR (Pospelov et al) EDMs: Theory Neutron Neutral Atoms Deuteron

  34. EDMs & Schiff Moments I Courtesy C.P. Liu

  35. Liu et al: New formulation of Schiff operator New nuclear calc’s needed ! + … Dominant in nuclei & atoms Nuclear & hadron structure ! Schiff Moment in 199Hg Engel & de Jesus: Reduced isoscalar sensitivity ( qQCD ) EDMs & Schiff Moments II One-loop EDM: q, l, n… Chromo-EDM: q, n…

  36. Dominant in nuclei & atoms EDMs in SUSY I One-loop EDM: q, l, n… Chromo-EDM: q, n…

  37. EDMS in SUSY II Current Limits on de: ~ 10-3 at one loop “SUSY CP Problem” Complex  CP-odd phase • EG:1-loop EDM contribution: [Ellis, Ferrara & Nanopoulos ‘82] M ~ sfermion mass • E.G. MSSM: In general, the MSSM contains many new parameters, including multiple new CP-violating phases, e.g. With a universality assumption, 2 new physical CP-odd phases Courtesy A. Ritz

  38. T ~ TEW Future de dn dA Cirigliano, Lee, Tulin, R-M Resonant Non-resonant EDMs & Baryogenesis: One Loop

  39. Decouple in large limit Dominant in nuclei & atoms Two-loop EDM only: no chromo-EDM Weinberg: small matrix el’s EDMs in SUSY III One-loop EDM: q, l, n… Chromo-EDM: q, n…

  40. Theory Cosmology LHC EDMs Theory Baryogenesis: EDMs & Colliders

  41. baryogenesis One loop EDMS Prospective dn LHC reach • CPV tiny: EWB & SUSY CP prob • suppress with heavy sfermions • two-loop de , dn but tiny dA LEP II excl Present de SUSY Baryogenesis: EDMs & Colliders I Cirigliano, Profumo, R-M

  42. Light LH squarks Heavy RH squarks Heavy LH squarks Light RH squarks Knowledge of spectrum needed (LHC) Chung, Garbrecht, R-M, Tulin Stronger limits on CPV for light squarks (one-loop regime) SUSY Baryogenesis: EDMs & Colliders II Transport, Spectrum, & EDMs “Superequilibrium” ?

  43. Larger YB for light Higgses Li, Profumo, RM Vanishing EDMs due to cancellations, even at small mA Need knowledge of spectrum (LHC) & tan (g-2) Limits on CPV for depend on Higgs mass & tan SUSY Baryogenesis: EDMs & Colliders III Higgs Boson Masses

  44. Cosmic Energy Budget Electroweak symmetry breaking: Higgs ? Leptogenesis: discover the ingredients: LN- & CP-violation in neutrinos Baryogenesis: When? CPV? SUSY? Neutrinos? Weak scale baryogenesis: test experimentally: EDMs Beyond the SM SM symmetry (broken) The Origin of Matter & Energy ?

  45. , Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Baryogenesis: Ingredients

  46. Non-equilibrium Quantum Field Theory Closed Time Path (CTP) Formulation Conventional, T=0 equilibrium field theory:

  47. Non-equilibrium Quantum Field Theory Two assumptions: • Non-degenerate spectrum • Adiabatic switch-on of LI LI

More Related