480 likes | 673 Views
IV. EDMs & the Origin of Matter. The cosmic baryon asymmetry Electroweak baryogenesis Electric dipole moments. Cosmic Energy Budget. Dark Matter. Dark Energy. Baryons. Stars, planets, humans…. Baryon asymmetry of the universe:. After inflation: equal amounts of matter and antimatter.
E N D
IV. EDMs & the Origin of Matter • The cosmic baryon asymmetry • Electroweak baryogenesis • Electric dipole moments
Cosmic Energy Budget Dark Matter Dark Energy Baryons Stars, planets, humans… Baryon asymmetry of the universe:
After inflation: equal amounts of matter and antimatter Quarks & gluons become protons, neutrons…. p, n, e- become light elements & later stars, galaxies… How did we get something from nothing? e+ + e- qqq p, n… np d + q+ q Matter & Cosmic History
Cosmic Energy Budget Dark Matter Leptogenesis: discover the ingredients: LN- & CP-violation in neutrinos Dark Energy Baryons T-odd , CP-odd by CPT theorem Stars, planets, humans… T-odd , CP-odd by CPT theorem T-odd , CP-odd by CPT theorem T-odd , CP-odd by CPT theorem Weak scale baryogenesis: test experimentally: EDMs & Higgs Boson Searches Explaining non-zero rB requires CP-violation and a scalar sector beyond those of the Standard Model (assuming inflation set rB=0) Baryon asymmetry of the universe:
Big Bang Nucleosynthesis: Light element abundances depend on YB p, n, e- become light elements & later stars, galaxies… np d + Matter & Cosmic History
Cosmic Microwave Bcknd: Shape of anisotropies depends on YB Last scattering: imperfect black body Matter & Cosmic History
Anomalous B-violating processes Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Prevent washout by inverse processes Sakharov, 1967 Baryogenesis: Ingredients
Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Kuzmin, Rubakov, Shaposhnikov McLerran,… EW Baryogenesis: Standard Model Anomalous Processes Different vacua: D(B+L)= DNCS Sphaleron Transitions
Shaposhnikov Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics 1st order 2nd order Sakharov, 1967 • CP-violation too weak • EWPT too weak Increasing mh EW Baryogenesis: Standard Model
Quantum Transport CPV Chem Eq R-M et al Unbroken phase Weak Scale Baryogenesis Systematic baryogenesis: SD equations + power counting Veff (f,T): Requirements on Higgs sector extensions & expt’l probes • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase CP Violation 1st order phase transition Sakharov, 1967 Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (numerical) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD • Is it viable? • Can experiment constrain it? • How reliably can we compute it? • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Baryogenesis: New Electroweak Physics
EW Precision Data: 95% CL (our fit-GAPP) LEP Exclusion Non-SM Higgs(es) ? EWSB: Higgs? • SM “background” well below new CPV expectations • New expts: 102 to 103 more sensitive • CPV needed for BAU? LEPEWWG
Light RH stop w/ special Need 1st order 2nd order So that Gsphaleron is not too fast Increasing mh Computed ESM: mH < 40 GeV Stop loops in VEff mh>114.4 GeV EMSSM ~ 10 ESM :mH < 120 GeV or ~ 90 GeV (SUSY) Electroweak Phase Transition & Higgs LEP EWWG
sin2q Need 1st order 2nd order Non-doublet Higgs (w / wo SUSY) • Can an augmented Higgs sector • Generate a strong 1st order EWPT ? • Allow for a heavier SM-like Higgs than in the MSSM ? • Alleviate the tension between direct Higgs search bounds and the EWPO ? • Be discovered at the LHC ? • Can its necessary characteristic probed at the LHC and a future e+e- collider ? So that Gsphaleron is not too fast Mixing Decay Increasing mH Computed ESM: mH < 40 GeV mh>114.4 GeV or ~ 90 GeV (SUSY) Electroweak Phase Transition & Higgs LEP EWWG
Reduced SM Higgs branching ratios mH B.R. reduction Need 1st order 2nd order Non-doublet Higgs (w / wo SUSY) Unusual final states So that Gsphaleron is not too fast O’Connell, R-M, Wise Mixing Decay Increasing mH Computed ESM: mH < 40 GeV mh>114.4 GeV or ~ 90 GeV (SUSY) Electroweak Phase Transition & Higgs LEP EWWG
Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase 1st order phase transition Sakharov, 1967 “Gentle” departure from equilibrium & scale hierarchy • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Cirigliano, Lee, R-M,Tulin Baryogenesis: New Electroweak Physics 90’s: Cohen, Kaplan, NelsonJoyce, Prokopec, Turok Unbroken phase CP Violation Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD
CPV phases Parameters in Lnew Bubble & PT dynamics Departure from equilibrium • Earliest work: QM scattering & stat mech • New developments: non-equilibrium QFT Systematic Baryogenesis I Goal: Derive dependence of YB on parameters Lnew systematically (controlled approximations)
Unbroken phase Topological transitions Broken phase nL produced in wall & diffuses in front 1st order phase transition FWS(x)->0 deep inside bubble Systematic Baryogenesis Cohen, Kaplan, Nelson Joyce, Prokopec, Turok “snow”
Unbroken phase Topological transitions … + Compute from first principles given Lnew Broken phase 1st order phase transition = + + Systematic Baryogenesis Riotto Carena et al Lee, Cirigliano, Tulin, R-M Quantum Transport Equation Schwinger-Dyson Equations
Assumptions: LI Evolution is adiabatic Spectrum is non-degenerate Density is zero Evolution is non-adiabatic: vwall > 0 -> decoherence Spectrum is degenerate: T > 0 -> Quasiparticles mix Density is non-zero Quantum Transport & Baryogenesis Electroweak Baryogenesis Particle Propagation: Beyond familiar (Peskin) QFT
= + + - + … + Non-equilibrium T>0 Evolution Generalized Green F’ns • Spectral degeneracies • Non-adiabaticity LI
T > 0: Degeneracies M(T) GP(T) vW > 0: Non-adiabaticity Decoherence time: td ~ 1/(vW k) vW e.g., particle in an expanding box Scale Hierarchy Time Scales Plasma time: tP ~ 1/GP
k = kEFF(l,Lw) n=1 n=2 n=3 Quantum Decoherence L L + DL
Fast, but not too fast Work to lowest, non-trivial order in e’s Error is O (e) ~ 0.1 ed =vw (k / w ) << 1 Hot, but not too hot Cirigliano, Lee, R-M ep = Gp / w << 1 Dense, but not too dense em = m / T << 1 Systematically derive transport eq’s from Lnew Evolution is non-adiabatic: vwall > 0 -> decoherence Spectrum is degenerate: T > 0 -> Quasiparticles mix Density is non-zero Competing Dynamics CPV Ch eq Cirigliano, Lee,Tulin, R-M Quantum Transport & Baryogenesis Electroweak Baryogenesis Scale Hierarchy:
GY >> other rates? (No) • Majorana fermions ? (densities decouple) • Particle-sparticle eq? • Density indep thermal widths? = + Expand in ed,p,m CP violating sources + From S-D Equations: Chiral Relaxation • SCPV • GM , GH , GY … Approximations Producing nL = 0 Strong sphalerons Riotto, Carena et al, R-M et al, Konstandin et al • Neglect O(e3) terms • Others under scrutiny • SCPV • GM , GH , GY , GSS … + R-M, Chung, Tulin, Garbrecht, Lee, Cirigliano R-M et al Objectives: • Determine param dep of SCPV and all Gs and not just that of SCPV • Develop general methods for any model with new CPV • Quantify theor uncertainties Currents Links CP violation in Higgs and baryon sectors Quantum Transport Equations
M1 0 -mZ cosb sinqW mZ cosb cosqW T ~TEW : scattering of H,W from background field MN = ~ ~ T ~ TEW mZ sinb sinqW M2 -mZ sinb sinqW 0 CPV 0 -m -mZ cosb sinqW mZ cosb cosqW -m T << TEW : mixing of H,W to c+, c0 mZ sinb sinqW -mZ sinb sinqW 0 ~ ~ ~ ~ M2 MC = m Illustrative Study: MSSM Chargino Mass Matrix Neutralino Mass Matrix Resonant CPV: M1,2 ~ m
Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase 1st order phase transition Elementary particle EDMs: N>>1 Sakharov, 1967 Many-body EDMs: • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Engel,Flambaum, Haxton, Henley, Khriplovich,Liu, R-M Baryogenesis: New Electroweak Physics 90’s: Cohen, Kaplan, NelsonJoyce, Prokopec, Turok Unbroken phase CP Violation Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD
EDMs: New CPV? • SM “background” well below new CPV expectations • New expts: 102 to 103 more sensitive • CPV needed for BAU?
QCD QCD QCD EDMs: Complementary Searches Improvements of 102 to 103 Electron Neutron Neutral Atoms Deuteron
Classification of CP-odd operators at 1GeV Effective field theory is used to provide a model-independent parametrization of CP-violating operators at 1GeV Dimension 4: Dimension “6”: Dimension “8”: Courtesy A. Ritz
Origin of the EDMs Effective CPV Operators Energy Fundamental CP phases TeV QCD pion-nucleon coupling ( ) Neutron EDM ( ) nuclear EDMs of paramagnetic atoms ( ) EDMs of diamagnetic atoms ( ) atomic Courtesy A. Ritz
mN=2.2 GeV Schiff Screening Improvements of 102 to 103 Electron ChPT for dn: van Kolck et al Atomic effect from nuclear finite size: Schiff moment Hadronic couplings Neutron EDM from LQCD: Nuclear Schiff Moment Pospelov et al: QCD QCD QCD Nuclear EDM: Screened in atoms • Two approaches: • Expand in q & average over topological sectors (Blum et al, Shintani et al) • Compute DE for spin up/down nucleon in background Efield (Shintani et al) PCAC + had models & QCD SR QCD SR (Pospelov et al) EDMs: Theory Neutron Neutral Atoms Deuteron
EDMs & Schiff Moments I Courtesy C.P. Liu
Liu et al: New formulation of Schiff operator New nuclear calc’s needed ! + … Dominant in nuclei & atoms Nuclear & hadron structure ! Schiff Moment in 199Hg Engel & de Jesus: Reduced isoscalar sensitivity ( qQCD ) EDMs & Schiff Moments II One-loop EDM: q, l, n… Chromo-EDM: q, n…
Dominant in nuclei & atoms EDMs in SUSY I One-loop EDM: q, l, n… Chromo-EDM: q, n…
EDMS in SUSY II Current Limits on de: ~ 10-3 at one loop “SUSY CP Problem” Complex CP-odd phase • EG:1-loop EDM contribution: [Ellis, Ferrara & Nanopoulos ‘82] M ~ sfermion mass • E.G. MSSM: In general, the MSSM contains many new parameters, including multiple new CP-violating phases, e.g. With a universality assumption, 2 new physical CP-odd phases Courtesy A. Ritz
T ~ TEW Future de dn dA Cirigliano, Lee, Tulin, R-M Resonant Non-resonant EDMs & Baryogenesis: One Loop
Decouple in large limit Dominant in nuclei & atoms Two-loop EDM only: no chromo-EDM Weinberg: small matrix el’s EDMs in SUSY III One-loop EDM: q, l, n… Chromo-EDM: q, n…
Theory Cosmology LHC EDMs Theory Baryogenesis: EDMs & Colliders
baryogenesis One loop EDMS Prospective dn LHC reach • CPV tiny: EWB & SUSY CP prob • suppress with heavy sfermions • two-loop de , dn but tiny dA LEP II excl Present de SUSY Baryogenesis: EDMs & Colliders I Cirigliano, Profumo, R-M
Light LH squarks Heavy RH squarks Heavy LH squarks Light RH squarks Knowledge of spectrum needed (LHC) Chung, Garbrecht, R-M, Tulin Stronger limits on CPV for light squarks (one-loop regime) SUSY Baryogenesis: EDMs & Colliders II Transport, Spectrum, & EDMs “Superequilibrium” ?
Larger YB for light Higgses Li, Profumo, RM Vanishing EDMs due to cancellations, even at small mA Need knowledge of spectrum (LHC) & tan (g-2) Limits on CPV for depend on Higgs mass & tan SUSY Baryogenesis: EDMs & Colliders III Higgs Boson Masses
Cosmic Energy Budget Electroweak symmetry breaking: Higgs ? Leptogenesis: discover the ingredients: LN- & CP-violation in neutrinos Baryogenesis: When? CPV? SUSY? Neutrinos? Weak scale baryogenesis: test experimentally: EDMs Beyond the SM SM symmetry (broken) The Origin of Matter & Energy ?
, Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Baryogenesis: Ingredients
Non-equilibrium Quantum Field Theory Closed Time Path (CTP) Formulation Conventional, T=0 equilibrium field theory:
Non-equilibrium Quantum Field Theory Two assumptions: • Non-degenerate spectrum • Adiabatic switch-on of LI LI