1 / 69

Probing Lorentz invariance and other fundamental symmetries in

W.Heil. Probing Lorentz invariance and other fundamental symmetries in 3He/ 129 Xe clock-comparison experiments. Outline:. Features of frequency standards and clocks. 3 He/ 129 Xe „ spin “- clock. 3 He/ 129 Xe clock-comparison experiments. Conclusion and outlook.

anana
Download Presentation

Probing Lorentz invariance and other fundamental symmetries in

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. W.Heil Probing Lorentz invarianceandother fundamental symmetries in 3He/129Xe clock-comparisonexperiments Outline: • Features offrequencystandardsandclocks • 3He/129Xe „spin“-clock • 3He/129Xe clock-comparisonexperiments • Conclusionandoutlook

  2. A. Schawlow : “Never measureanything but frequency!” Since Galileo Galilei and Christiaan Huygens invented the pendulum clock, time and frequency have been the quantities that we can measure with thehighestprecision. Counter FrequencydividerOscillator minute/hourhand pendulum  10 ms / day drivingweight

  3. Currentaccuracy: Microwave: 6 x 10-16 Optical : 3 x10-17  1 ns / day Stablefrequency Localoscillator sensitivity (absolute scale):  mHz better: referencetransitionat f  1 Hz with f /f  10-14  „nuclearspin -clock“

  4. Clockbased on nuclearspinprecession „ spin-clock“ detector signal (a.u.) (ms )

  5. Spin-clock: Detectionofspinprecession: • long spin coherence times T2*> 1 day @ low magnetic • fields (T) & low gas pressures (mbar) • at B0< 0.1 T, the SNR of a SQUID magnetometer exceeds • the SNR of conventional NMR spectrometers based • on Faraday induction to detect the signal. • intrinsic noise of SQUID:  1 fT/Hz • no feedback coupling between detector • and spin sample

  6. Accuracy of frequency determination: Fourier width # datapoints • If the noise w[n] is Gaussian distributed, the Cramer-Rao Lower Bound (CRLB) sets the lower limit on the variance example: SNR = 10000:1 , = 1 Hz ,T= 1 day

  7. 3He/129Xe „spin“-clock n = -1.913 K He = -2.1276 K Xe= -0.7779 K Xe129 He3 J 

  8. 3He (4.5 mbar ) 6 cm BMSR 2, PTB Berlin The 7-layered magnetically shielded room (residual field < 2 nT) LTc-SQUID J. Bork, et al., Proc. Biomag 2000, 970 (2000). magneticguidingfield 0.4 T (Helmholtz-coils)

  9. 3He freespin-precessionsignal Note: Atpresent, theXespin coherence time T2* is limited to due to wall relaxation SQUID Signal: d parameters: pHe= 4.5 mbar ; PHe= 15% R =2.9 cm; d = 6cm 4 h < T2*< 6 h R

  10. 0 5 1 0 1 5 2 0 129Xe 3He / 129Xe clockcomparisontogetrid ofmagneticfielddrifts 406.68 drift ~ 1pT/h B [nT] 406.67   10-5 Hz/h 406.66 t [h]  3He (13 Hz) (4,7 Hz) !

  11. Subtractionofdeterministicphaseshifts I. Earth‘srotation  = He- He / Xe Xe rem =  - Earth II. + (t)spin-coupling Phase residuals rem

  12. The detection of the free precession of co-located 3He/129Xe sample spins can be used as ultra-sensitive probe for non-magneticspin interactions • Searchfor a Lorentz violatingsiderealmodulation • oftheLarmorfrequency • Searchforspin-dependentshort-rangeinteractions • Searchfor EDM of Xenon • …

  13. Searchforviolationof Lorentz invariance Michelson (1881,Potsdam) Michelson&Morley (1887,Cleveland) E Fundamental theory (non-commutativegeometry, strings, varyingcouplings, … ? Planck scale  Issue: presentlynocompleteand realistic fundamental theory ? low-energy world Low-energyeffectivetheory (SME) Idea: - examinemanifistationsof Lorentz/CPT violatingvacuum - construct all possiblemodificationsto SM Advantage: describes all low-energyeffectsof Lorentz violation

  14. Standard-Model Extension A. Kostelecky and C. Lane: Phys. Rev. D 60, 116010 (1999) Modified Dirac equationfor a freespin ½ particle (w=e,p,n) standard DE CPT violating CPT preservingterms Lorentz violatingterms Doppler-shift Cs- fountain Torsion pendulum Antihydrogen spectroscopy Astrophysics Hg/Cs comparison UCN/Hgcomparison He/Xe maser K/He co-magnetometer G. Saathoff et al., PRL 91 (2003) 190403 Experimental access: Wolf et al., B.Heckel et al. PRD 78 (2008) 092006  clock comparison experiments couplingstrength

  15. Coupling of spin to background field: C  LAB cosmic microwave background v = 368 km/s Zeeman LV Tdip 3.3 mK

  16. Searchfor a siderealmodulationoftheweightedphasedifference rem = He - He / Xe Xe- Earth rem s= 2/TSD= 2/(23h:56m:4.091s).

  17. Results of 2-fit for the sidereal phase amplitudes ac and as together with their correlated and uncorrelated 1-errors (2nd row). • To demonstrate the strong dependence of the correlated error on s , corresponding fit results are shown for multiples of s: ’s = gs . Phaseamplitudeofthe siderealmodulation: Phase residualswith fit-resultsfor

  18. In termsoffrequency: (95% C.L.) Kostelecky et al. , Phys. Rev. D 60, 116010 (1999) (X,Y,Z) non-rotating frame with Z along Earth‘s rotation axis Lab-frame with quantization axis z free neutron: PTB Berlin: n : µ = -1.913 µK = 52,51640 north Schmidt-Model = 280 (north-south) 3He: µ = -2.1276 µK 129Xe: µ = -0.7779 µK

  19. Ourresult(submittedto PRD) Torsion pendulum B.R.Heckel et al., PRD 78 (2008) 092006 • Spin maser experimentswith3He and129Xe ( D.Bear et al., PRL 85 (2000) 5038 ) • K-3He co-magnetometer • (T.M.Brown et al.,arXiv:1006.5425; 2010)

  20. Searchfor a newpseudoscalarboson (Axion-likeparticle) Gerardus 't Hooft,: QCDhasa non-trivial vacuumstructurethat in principlepermits CP-violation fromneutron EDM weget: Original proposalforAxion ( R. Peccei, H.Quinn PRL 38(1977),1440) aspossiblesolutiontothe „Strong CP Problem“ thatcancelsthe CP violatingterm in the QCD Lagrangian Modern interest: Dark Matter candidate. All couplingsto matter areweak Axions, iftheyexist, will beverylightand will mediate a macroscopic CP- force energyscale P.Q.-symmetry isspontaneouslybroken

  21. Axionsgenerated in thesun Laboratory axions Polarised laser through vacuum in a strong magneticfield (PVLAS) AXION SEARCHES usingthe PrimakoffEffect Galacticaxions Tunable resonant cavity in magnetic field coupled to a ultra low noise microwave receiver ADMX, CARRACK 8 Tesla

  22. If axions are dark matter, they are a relic of the early universe. A particular scenario coupled with the requirement that the axion mass density not severely overclose the universe results in a lower bound to the axion mass. • CurrentAxionSearch Experiments • Solar AxionTelescope – „CAST“ • Dark Matter AxionSearch – „ADMX“ • Vacuum Optical Properties –“PVLAS“ etc. • Photon Disappearance Experiments • New Force Search – Torsion Pendulums, etc. CAST

  23. 3He 3He Most recentshort-rangemacroscopicforcetests He He ( 3He ) ( N ) with

  24. How to measure? z-axis ( B-field ) D d

  25. Lay-out of experimental setup (Pb-glass)

  26. Dewar housingtheLTc-SQUIDs Pb-glasscylinder 3He/129Xe cell

  27. Ø 57 mm H = 81 mm Density = 3.9 g/cm3 Lead glasssamples

  28. Magneticfield(measured via theHe spinprecessionsignal ) in presenceof a conductor ( aluminiumcylinder : diameter56 mm, length 70 mm) removal of aluminium block paramagneticeffects Johnson noise

  29. Falseeffects : Barometricformula : h SHe B0 x x SXe assume:

  30. B0 Right sample (8 hours): Δ = 10.6 ± 1.7 nHz∝ΔB = 0.33 ± 0.05 fT Left sample (8 hours): Δ = 9.7 ± 1.7 nHz∝ΔB = 0.30 ± 0.05 fT =>  = ½ (Δright sample - Δleft sample ) = 0.9 ± 1.2 nHz Analysis: Average potential <V*()> was calculated numerically for cell sizes diameter 6 cm x length 6 cm, gap of 3 mm between cell inner volume and lead glass cylinder (diameter 57 mm x length 81 mm ) Fromthemeasuredvalueof we get gSgP < 4 (2π)2 m3He / (NV ħ <V*()>)

  31. September 2010 runat PTB-Berlin: Expectedsensitivityrangewith BGO(=7.9 g/cm3), a gapbetween 0.1 – 1 mm, and 3 weeksofdatataking 3He/129Xe BGO

  32. Conclusionand Outlook • 3He , 129Xe clocksbased on freespinprecession •  longspincoherencetimes (so far limited by T1,wall) • Magnetometry magnetometerfornEDMexperiments • Clockcomparison LV-SME (Kostelecky): newlimits on theboundneutron !!! Improvementsstronglydepend on increaseof T2,Xe !!!

  33. Short rangespin-dependentinteraction: J.E.Moody, F.Wilczek PRD 30 (1984) 130 First results (16 h run) : newupperlimitsforgsgp in therange 10-3 m <  < 10-1m Improvements: * BGO ( =7.9 g/cm3) insteadofPb-glass (=3.9 g/cm3) (Sept.2010 run) * gap: < 1 mm * Longermeasurementtimes * Longer T2,Xe M.Rosenberry et al., PRL 86 (2001)22 129Xe electricdipolemoment: Proposal: accuracy in measuringfrequencies:

  34. 3He/129Xe clockcomparisonprobing fundamental symmetries • InstitutfürPhysik, Universität Mainz: • C. Gemmel, W. Heil, S. Karpuk, Y. Sobolev, • K. T. • Physikalisch-Technische-Bundesanstalt, Berlin: • M. Burghoff, W. Kilian, S. Knappe-Grüneberg, • W. Müller, A. Schnabel, F. Seifert, L. Trahms • PhysikalischesInstitut, Ruprecht-Karls-Universität Heidelberg: • U. Schmidt K.Tullney

  35. Field drifts 2 AllanStandard Deviation i i+1  [s]

  36. ASD ofphaseresiduals

  37. Gain in sensitivitybyreducingthegap Pb-glass 3He/129Xe 3 mm

  38. Feedback looptogetlongcoherencetimes … ( Cs-Magnetometer, Maser, … ) • but … • frequencyshifts due to • feedbackphaseerror • lightshift • …

  39. …reemission of fluorescence light LASER absorption … …transfer of angular momentum 5 p1/2 = 1 – (2/3)n 1/3 2/3 5 s1/2 m = -1/2 m = +1/2 N(1/2) – N(-1/2) P = N(1/2) + N(-1/2) T1 Optical Pumping Bo Rb-pumping + rate equation:

  40. Rb 3He 3He 3He* 3He 3He* Optical Pumping of 3He history : ●Spin exchangewithopticallypumpedRb-vapour ( SEOP ) ( Bouchiat et al., Phys. Rev. Lett. 5 (1960) 373 ) pHe 1-10 bar ●Optical pumping of metastable 3He*-atoms ( MEOP ) ( Colegrove et al., Phys. Rev. 132 (1963) 2561 ) pHe 1 mbar

  41. MEOP: Metastabilty Exchange Optical Pumping L.D. Schearer 3He : 1 mbar 3He* 1ppm

  42. Transverse Relaxation: T2* Cates; Schaefer; Happer: Phys. Rev. A 37, 8 (1988) absolute gradient → low magn. field (B0 ≈ 1 T) size: R => 3cm longitudinal relaxation time T1(He) > 100 h diffusionconst. D ~ 1/p → lowpressure (p ~ mbar) SQUID Signal: d R

  43. J.Opt.Soc.Am. 28(1938)215 G. Saathoff et al., PRL 91 (2003) 190403

  44. Laser A Laser P β (moving clock) metastable7Li+ - ions Lamb dip TSR (HD) : ß = 0.064 ESR(GSI) : ß = 0.34 Ch.D.Lane, PRD 72 (2005) 016005

  45. Fundamental physicstestsusingRband Cs fountains Wolf et al., Observable freeof 1st order Zeeman-effect

More Related