560 likes | 689 Views
Choco A Constraint Programming System. Suzette Person CSCE 821 Spring 2008. Outline. Background & introduction Domain types Constraints and Constraint Propagation Search & Branching How we use Choco in.. Java Pathfinder, a static analysis tool for Java programs. Background.
E N D
ChocoA Constraint Programming System Suzette Person CSCE 821 Spring 2008
Outline • Background & introduction • Domain types • Constraints and Constraint Propagation • Search & Branching • How we use Chocoin.. • Java Pathfinder, a static analysis tool for Java programs
Background • Open-source (BSD license) • Hosted on Sourceforge.net • Created in 1996 by François Laburthe and Narenda Jussien • Associated with Ecole des Mines de Nantes (Nantes, France), Bouygues (Paris, France) and Amadeus (Nice, France)
Background • Developed to support CP research in combinatorial optimization • ‘Easy’ to use • Extensible • Modular • ‘Optimized’ • Library vs. autonomous system
Implementation Highlights • Developed in Claire (compile to Java or C++) • Encapsulate all information in a Problem object to support definition of multiple problems in a single session • Single threaded search, one per problem instance • Use trailing (i.e. incremental) stack for backtracking
Outline • Background & introduction • Domain types • Constraints and Constraint Propagation • Search & Branching • How we use Chocoin.. • Java Pathfinder, a static analysis tool for Java programs
Domain Types Supports three types of variable domains • Integer: IntDomainVar • Real: RealVar • Set: SetVar
Domain Types • IntDomainVar (support for discrete domains) • EnumIntVar • Enumerated integer values • Used for small domains • BoundIntVar • Intervals of integer values • Used for large domains • Represented by upper and lower bounds: useful for box-consistency (propagation is performed only on bounds)
Domain Types • RealVar (support for continuous domains) • Limited support currently available in Choco (enough to support “toy” problems) • Ex. CycloHexane problem y2 * (1 + z2) + z * (z - 24 * y) = -13 x2 * (1 + y2) + y * (y - 24 * x) = -13 z2 * (1 + x2) + x * (x - 24 * z) = -13 RealVar x = pb.makeRealVar("x"); RealVar y = pb.makeRealVar("y", -1.0e8, 1.0e8); RealVar z = pb.makeRealVar("z", -1.0e8, 1.0e8);
Domain Types • SetVar • High level modeling tool • Supports representation of domains where each value is a set • Example: a set variable on integer values [1..n] has 2n values - every possible subset of {1..n} • Choco applies a kind of bounds consistency to this type of domain
Outline • Background & introduction • Domain types • Constraints and Constraint Propagation • Search & Branching • How we use Chocoin.. • Java Pathfinder, a static analysis tool for Java programs
Constraints • Constraints on integer variables • Constraints on real variables • Constraints on set variables • User-defined constraints
1. Constraints on integer variables • Basic constraints • Channeling constraints • Arbitrary constraints (in extension) • Binary constraints; Nary constraints • Advanced constraints • Global constraints • Boolean composition of constraints
Integer Vars > Basic Constraints • Arithmetic • Equality (v1 == v2, v1 != v2); comparisons (v1 <= v2, v1 < v2); difference; linear combinations; product of variables, … • Complex expressions • Over expressions: plus, minus, mult, … • Over variables: times, scalar, sum, … • More expressions • max, min, abs , …
Integer Vars > Basic Constraints var1 var2 c1 [2..5] [1..10] var4 c2 [-4..8] [1..10] var3 [5..10] c3 var5exp IntDomainVar var1 = prob.makeEnumIntVar(“var1”, 2, 5); IntDomainVar var2 = prob.makeEnumIntVar(“var2”, 1, 10); IntDomainVar var3 = prob.makeEnumIntVar(“var3”, 5, 10); IntDomainVar var4 = prob.makeEnumIntVar(“var4”, 1, 10); Constraint c1 = prob.gt(var2,var1); Constraint c2 = prob.leq(var1,var3); IntExp var5Exp = prob.minus(var4, var1); Constraint c3 = prob.neq(var5Exp,var3); prob.post(c1); prob.post(c2); prob.post(c3);
Integer Vars > Channeling Constraints • Redundant models • A common technique for strengthening propagation or to get more freedom in designing dedicated heuristics • Channeling constraints • Used to ensure the integrity of different models • By propagating variable instantiations and domain reductions between models
Integer Vars > Channeling Constraints • Channeling constraints are not part of the original problem specification – only serve as a link between models • Inverse channeling: ensures x[i]=j <=> y[j]=i (useful in matrix models) • Boolean channeling: ensures x=j <=> bv=1 where bv is a boolean variable of domain {0,1} and x is an integer variable
Integer Vars > Arbitrary Constraints • Binary and N-ary • Specified in extension • As supports or conflicts • Suitable for small domains • In tables, which may be shared by different constraints (!) in order to reduce space • Specified in intension • As predicates, implies some run-time overhead for calling the feasibility test
Integer Vars > Arbitrary Constraints > Extension • Binary • Consistency checking available: AC3, AC4, AC2001 • Nary • Consistency checking available: FC (?) & GAC • GAC • Supports: GAC3rm by [Lecoutre & Hemery IJCAI 2007] • Conflicts: standard GAC
Integer Vars > Advanced Constraints • Global • allDiff • globalCardinality • occurrence • cumulative • nth • lex • atMostValue • regular
Integer Vars > Advanced Constraints • allDiff: ensures all pairs of variables have distinct values • globalCardinality: ensures the number of occurrences of the value i is within the specified bounds Satisfying? var1 = 5 var2 = 8 var3 = 5 var4 = 5 var1 var2 vars=[var1,var2,var4] low[4]=1 high[4]=2 c1 [2..5] [1..10] var4 c2 c1:var1 < var2 c2: var1 <= var3 c3: var5exp<>var3 c4:gc(vars,low,high) [-4..8] [1..10] var3 [5..10] c3 var5exp (var4 – var1)
Integer Vars > Advanced Constraints • occurrence: ensures that the specified variable is instantiated to the number of occurrences of the value in a list of variable values (a specialization of globalCardinality) Satisfying? var1 = 5 var2 = 8 var3 = 2 var4 = 5 var1 var2 vars=[var1,var2,var4] c1 [2..5] [1..10] var4 c2 c1:var1 < var2 c2: var1 <= var3 c3: var5exp<>var3 c4: occur(vars, 5, var3) [-4..8] [1..10] var3 [5..10] c3 var5exp (var4 – var1)
Integer Vars > Advanced Constraints • cumulative: Given a set of tasks defined • by their starting dates, ending dates, durations and consumptions/heights, • the cumulative ensures that at any time t, the sum of the heights of the tasks which are executed at time t does not exceed a given limit C (the capacity of the resource).
Integer Vars > Advanced Constraints > cumulative C = capacity (cumulative) cost/consumption time t1 In this example: each task has consumption/height = 1 unit t2 t3 t4 t5
Integer Vars > Advanced Constraints • nth: allows specification of a constraint where values are variables (also known as the element constraint) • http://www.emn.fr/x-info/sdemasse/gccat/sec4.105.html#uid11321 • lex: enforces a strict lexicographic ordering on two vectors of integer values
Integer Vars > Advanced Constraints • atMostValue: enforces the number of different values assigned to variables to be at most n vars=[var1,var2,var4] Satisfying? var1 = 5 var2 = 8 var3 = 5 var4 = 5 var1 var2 c1 [2..5] [1..10] c1:var1 < var2 c2: var1 <= var3 c3: var5exp<>var3 c4:amv(vars, 2) var4 c2 [-4..8] [1..10] var3 [5..10] c3 var5exp (var4 – var1)
Integer Vars > Advanced Constraints • regular: enforces a sequence of variables to be a word recognized by a given finite deterministic automaton (DFA) 3 Accepted words : sequence of value 3 (of size 6) where subsequences of value 1 (if any exist) are exactly of size 3. For example : 331113. 3 1 1 1 1 0 2 3 3
Integer Vars > Advanced Constraints > regular Problem pb = new Problem(); IntDomainVar[] vars = new IntDomainVar[6]; for (inti = 0; i < vars.length; i++) { vars[i] = pb.makeEnumIntVar("v" + i, 0, 5); } // Build the list of transitions of the DFA List<Transition> t = new LinkedList<Transition>(); t.add(new Transition(0, 1, 1)); t.add(new Transition(1, 1, 2)); t.add(new Transition(2, 1, 3)); t.add(new Transition(3, 3, 0)); t.add(new Transition(0, 3, 0)); // Two final states: 0, 3 List<Integer> fs = new LinkedList<Integer>(); fs.add(0); fs.add(3); DFA auto = new DFA(t, fs, 6); // Build the DFA pb.post(pb.regular(vars , auto)); // post the constraint
Integer Vars > Advanced Constraints > regular • Can be used as a GAC algorithm for a list of feasible or infeasible tuples • Can be more efficient than a standard GAC algorithm if the DFA is compact
Integer Vars > Advanced Constraints > regular • AllEqual constraint using the regular constraint Problem pb = new Problem(); IntDomainVar v1 = pb.makeEnumIntVar("v1", 1, 4); IntDomainVar v2 = pb.makeEnumIntVar("v2", 1, 4); IntDomainVar v3 = pb.makeEnumIntVar("v3", 1, 4); //add some allowed tuples (here, the tuples define an allEqual constraint) List<int[]> tuples = new LinkedList<int[]>(); tuples.add(new int[]{1, 1, 1}); tuples.add(new int[]{2, 2, 2}); tuples.add(new int[]{3, 3, 3}); tuples.add(new int[]{4, 4, 4}); // post the constraint pb.post(pb.regular(new IntDomainVar[]{v1, v2, v3},tuples));
Integer Vars > Boolean Composition of Constraints var1 var2 • If Only If • If Then c1 [2..5] [1..10] • And • Or • Implies c2 [-4..8] [1..10] var3 [5..10] c3 var5exp var4 IntDomainVar var1 = prob.makeEnumIntVar(“var1”, 2, 5); IntDomainVar var2 = prob.makeEnumIntVar(“var2”, 1, 10); IntDomainVar var3 = prob.makeEnumIntVar(“var3”, 5, 10); IntDomainVar var4 = prob.makeEnumIntVar(“var4”, 1, 10); Constraint c1 = prob.gt(var2,var1); Constraint c2 = prob.leq(var1,var3); IntExp var5Exp = prob.minus(var4, var1); Constraint c3 = prob.neq(var5Exp,var3); Constraint c4 = prob.or(prob.lt(var2,var3),prob.gt(var5Exp,0)); prob.post(c1); prob.post(c2); prob.post(c3); prob.post(c4);
2. Constraints on Set Variables • member • notMember • setDisjoint • eqCard • …
2a. Mixed Constraints (Set and Integer) • member • notMember • setDisjoint • eqCard • … (Provides supports for integer variables as set values)
3. Constraints on Real Variables y2 * (1 + z2) + z * (z - 24 * y) = -13 x2 * (1 + y2) + y * (y - 24 * x) = -13 z2 * (1 + x2) + x * (x - 24 * z) = -13 RealVar x = pb.makeRealVar("x"); RealVar y = pb.makeRealVar("y", -1.0e8, 1.0e8); RealVar z = pb.makeRealVar("z", -1.0e8, 1.0e8); RealExp exp1 = pb.plus(pb.mult(pb.power(y, 2), pb.plus(pb.cst(1.0), pb.power(z, 2))), pb.mult(z, pb.minus(z, pb.mult(pb.cst(24), y)))); … Equation eq1 = (Equation) pb.eq(exp1, pb.cst(-13)); eq1.addBoxedVar(y); eq1.addBoxedVar(z); … pb.post(eq1); pb.post(eq2); pb.post(eq3);
4. User-Defined Constraints • Useful when the basic propagation algorithms are not efficient enough to propagate the constraint • Abstract classes are available to support management of • the constraint network and • constraint propagation (for Integer and Set constraints)
Outline • Background & introduction • Domain types • Constraints and Constraint Propagation • Search & Branching • How we use Chocoin.. • Java Pathfinder, a static analysis tool for Java programs
Constraint Propagation • Choco uses a reactive approach to propagate constraints • Events are generated on variables • Variables “wake up” their constraints • Which generates new events • Propagate immediately • Add event to a queue
Constraint Propagation • Events on finite domains • INCINF: domain lower-bound on variable v is increased from b to a. • DECSUP: domain upper-bound on variable v is decreased from b to a. • INSTANTIATE: domain of v is reduced to {a} • REMOVAL: the value a is removed from the domain of v
Constraint Propagation • DFS vs. BFS processing of constraints • DFS: preemptive propagation of child events • BFS: propagation of events by generations (propagate root event, then children, then grandchildren, etc.) • Choco policy • INCINF & DECSUP: BFS (common FIFO queue) • REMOVAL events: FIFO queue • INSTANTIATE events: DFS (highest priority)
Outline • Background & introduction • Domain types • Constraints and constraint propagation • Search & branching • How we use Chocoin.. • Java Pathfinder, a static analysis tool for Java programs
Search • One (First) solution or all solutions • Optimization • Create a new variable corresponding to the cost of a solution (‘cost variable’) • Generate a constraint • representing the objective function and • relating the variables in the CSP to the ‘cost variable’ • Value of ‘cost variable’ is computed from the partial/complete assignment using the objective function • Values of ‘cost variable’ is then maximized/minimized • Restart parameter restarts the search after a solution is found or backtracks from current solution
Limiting the Search • Bound the search based on • Time • Number of nodes visited • User-defined criterion (e.g., depth bound)
Branching • Variable/value ordering • User-defined branching • Branching by posting constraints • Limited Discrepancy Search • Limited-Depth First Search
Branching > Over var/val • Defaults • Variable ordering: Least Domain • Value ordering: lexicographical increasing order • Also available • Most constrained (deg) • Domain over Degree (dom/deg) • Random • User-defined heuristics
Branching > User-Defined Branching • Beyond var/val ordering • User defines branching alternatives • Search proceeds down the first alternative, then moves to the next one, etc. • Special case: dichotomic branching • Dichotomic • Branches over a variable’s domain, splitting it in half • Left branch, updating upper bound • Right branch, updating lower bound
Branching > By Posting Constraints • One way to do ‘user-defined’ branching is to explicitly split the domain of a given variable • Another way is to add a new constraint whose effect to split the domain • Example: dichotomic branching • Divide in half • Add constraint for xmiddle point and x< middle point
Branching > Other • Limited Discrepancy Search • Limited Depth First Search • Choose a given depth • Allow backtracking as long as depth of partial solution is smaller than threshold • When depth limit is reached • Solver branches according to the heuristic • Without backtracking
Outline • Background & introduction • Domain types • Constraints and Constraint Propagation • Search & Branching • How we use Chocoin.. • Java Pathfinder, a static analysis tool for Java programs
My experience with Choco • Use in Java Pathfinder (JPF) • To support software development • Test case generation • Error detection (e.g., check for unhandled exceptions) • Check path conditions (specified as conjunctions of constraints) during symbolic execution • Check for path feasibility
Terminology • Static analysis • Symbolic execution • Path condition • Test-case generation