1 / 30

Image Warping (Szeliski Sec 2.1.2)

Image Warping (Szeliski Sec 2.1.2). http://www.jeffrey-martin.com. CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2014. Some slides from Steve Seitz. f. f. f. T. T. x. x. x. f. x. Image Transformations. image filtering: change range of image

Download Presentation

Image Warping (Szeliski Sec 2.1.2)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Image Warping (Szeliski Sec 2.1.2) • http://www.jeffrey-martin.com • CS194: Image Manipulation & Computational Photography • Alexei Efros, UC Berkeley, Fall 2014 • Some slides from Steve Seitz

  2. f • f • f • T • T • x • x • x • f • x Image Transformations • image filtering: change range of image • g(x) = T(f(x)) • image warping: change domain of image • g(x) = f(T(x))

  3. T • T Image Transformations • image filtering: change range of image • g(x) = T(f(x)) • f • g • image warping: change domain of image • g(x) = f(T(x)) • f • g

  4. Parametric (global) warping • Examples of parametric warps: • aspect • rotation • translation • perspective • cylindrical • affine

  5. T Parametric (global) warping • Transformation T is a coordinate-changing machine: • p’ = T(p) • What does it mean that T is global? • Is the same for any point p • can be described by just a few numbers (parameters) • Let’s represent a linear T as a matrix: • p’ = Mp • p = (x,y) • p’ = (x’,y’)

  6. Scaling • Scaling a coordinate means multiplying each of its components by a scalar • Uniform scaling means this scalar is the same for all components: • 2

  7. X  2,Y  0.5 Scaling • Non-uniform scaling: different scalars per component:

  8. Scaling • Scaling operation: • Or, in matrix form: • scaling matrix S • What’s inverse of S?

  9. (x’, y’) • (x, y) •  2-D Rotation • x’ = x cos() - y sin() • y’ = x sin() + y cos()

  10. (x’, y’) • (x, y) •  2-D Rotation • x = r cos (f) • y = r sin (f) • x’ = r cos (f + ) • y’ = r sin (f + ) • Trig Identity… • x’ = r cos(f) cos() – r sin(f) sin() • y’ = r sin(f) cos() + r cos(f) sin() • Substitute… • x’ = x cos() - y sin() • y’ = x sin() + y cos() • f

  11. 2-D Rotation • This is easy to capture in matrix form: • Even though sin(q) and cos(q) are nonlinear functions of q, • x’ is a linear combination of x and y • y’ is a linear combination of x and y • What is the inverse transformation? • Rotation by –q • For rotation matrices • R

  12. 2x2 Matrices • What types of transformations can be represented with a 2x2 matrix? • 2D Identity? • 2D Scale around (0,0)?

  13. 2x2 Matrices • What types of transformations can be represented with a 2x2 matrix? • 2D Rotate around (0,0)? • 2D Shear?

  14. 2x2 Matrices • What types of transformations can be represented with a 2x2 matrix? • 2D Mirror about Y axis? • 2D Mirror over (0,0)?

  15. 2x2 Matrices • What types of transformations can be represented with a 2x2 matrix? • 2D Translation? • NO! • Only linear 2D transformations • can be represented with a 2x2 matrix

  16. All 2D Linear Transformations • Linear transformations are combinations of … • Scale, • Rotation, • Shear, and • Mirror • Properties of linear transformations: • Origin maps to origin • Lines map to lines • Parallel lines remain parallel • Ratios are preserved • Closed under composition

  17. v =(vx,vy) • p • u=(ux,uy) Consider a different Basis • j =(0,1) • q • i =(1,0) • q=4i+3j = (4,3) • p=4u+3v

  18. é • ù • é • ù • u • v • u • v • é • ù • 4 • x • x • x • x • = • = • pij • puv • ê • ú • ê • ú • ê • ú • u • v • u • v • 3 • ë • û • ë • û • ë • û • y • y • y • y Linear Transformations as Change of Basis • Any linear transformation is a basis!!! • v =(vx,vy) • j =(0,1) • puv • pij • u=(ux,uy) • i =(1,0) • puv = (4,3) • pij= 4u+3v • px=4ux+3vx • py=4uy+3vy

  19. -1 • -1 • é • ù • é • ù • u • v • u • v • é • ù • 5 • x • x • x • x • = • = • puv • pij • ê • ú • ê • ú • ê • ú • u • v • u • v • 4 • ë • û • ë • û • ë • û • y • y • y • y What’s the inverse transform? • How can we change from any basis to any basis? • What if the basis are orthogonal? • j =(0,1) • v =(vx,vy) • pij • puv • u=(ux,uy) • i =(1,0) • pij= (5,4) • = pxu + pyv • puv = (px,py) = ?

  20. Projection onto orthogonal basis • j =(0,1) • v =(vx,vy) • pij • puv • u=(ux,uy) • i =(1,0) • pij= (5,4) • puv = (u·pij, v·pij) • é • ù • é • ù • u • u • u • u • é • ù • 5 • x • x • x • y • = • = • puv • pij • ê • ú • ê • ú • ê • ú • v • v • v • v • 4 • ë • û • ë • û • ë • û • y • y • x • y

  21. Homogeneous Coordinates • Q: How can we represent translation as a 3x3 matrix?

  22. Homogeneous Coordinates • Homogeneous coordinates • represent coordinates in 2 dimensions with a 3-vector

  23. y • 2 • (2,1,1) • or (4,2,2) • or (6,3,3) • 1 • x • 2 • 1 Homogeneous Coordinates • Add a 3rd coordinate to every 2D point • (x, y, w) represents a point at location (x/w, y/w) • (x, y, 0) represents a point at infinity • (0, 0, 0) is not allowed • Convenient coordinate system to represent many useful transformations

  24. Homogeneous Coordinates • Q: How can we represent translation as a 3x3 matrix? • A: Using the rightmost column:

  25. Translation • Example of translation • Homogeneous Coordinates • tx = 2ty= 1

  26. Basic 2D Transformations • Basic 2D transformations as 3x3 matrices • Translate • Scale • Rotate • Shear

  27. Matrix Composition • Transformations can be combined by matrix multiplication • p’ = T(tx,ty) R(Q) S(sx,sy) p

  28. Affine Transformations • Affine transformations are combinations of … • Linear transformations, and • Translations • Properties of affine transformations: • Origin does not necessarily map to origin • Lines map to lines • Parallel lines remain parallel • Ratios are preserved • Closed under composition • Models change of basis • Will the last coordinate w always be 1?

  29. Projective Transformations • Projective transformations … • Affine transformations, and • Projective warps • Properties of projective transformations: • Origin does not necessarily map to origin • Lines map to lines • Parallel lines do not necessarily remain parallel • Ratios are not preserved • Closed under composition • Models change of basis

  30. 2D image transformations • These transformations are a nested set of groups • Closed under composition and inverse is a member

More Related