1 / 25

Extinction Outline

Extinction Outline. Fossils continued: radioisotope dating & calibration Cambrian explosion Patterns in the fossil record Extinction mass extinctions Cretaceous extinction Permian extinction Next week: human evolution, evolution of disease. The story so far. Earth forms

anaya
Download Presentation

Extinction Outline

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Extinction Outline Fossils continued: radioisotope dating & calibration Cambrian explosion Patterns in the fossil record Extinction mass extinctions Cretaceous extinction Permian extinction Next week: human evolution, evolution of disease

  2. The story so far . . . • Earth forms • First life soon thereafter (ideas, little good evidence) • Multicellular organisms much later – needed atmospheric oxygen? • Tremendous increase in animal diversity in Cambrian • Fossils give us a biased, incomplete picture of the history of life

  3. Extinctions through time: percent of families lost End Permian K/T boundary background extinction

  4. The Cretaceous-Triassic Extinction (K/T) Initial evidence in favor of asteroid impact Iridium anomaly 77 Ir 192.217 Iridium: rare on earth, more common in comets and asteroids Also, more common in magma Or, from nearby supernova Source: massive volcanic eruptions? Or impact?

  5. If impact, what consequences (and what evidence might be found?) • Evidence of impact? • Why would this cause extinctions?

  6. Evidence for impact • Iridium anomaly found worldwide at K-T boundary • Shocked quartz in Caribbean and North America • Evidence for tsunami in North America • Crater in Yucatan • Cr isotopes found not volcanic

  7. Evidence for impact: Ir anomaly Hallam Fig 8.3

  8. Evidence for impact: tsunami deposits Fastovksy and Weishampel Fig 18.6

  9. How does an asteroid cause extinction? • Initial effects (first hour to day): • Middle-term effects • Long-term effects

  10. Were the dinosaurs already dying out? (Or did an asteroid kill off a dying group?) • Difficulties of answering!

  11. No loss of diversity until boundary: instaneous death (at least by geological time) Fastovksy and Weishampel Fig 18.12

  12. Who survived? Who went extinct? Percent of species extinct at K/T boundary Marine Continental 83% planktonic foraminifera 100% non-bird dinosaurs 100% ammonites 100% pterosaurs 93% marine reptiles 56% other reptiles 65% corals 10% flowering plants All animals > 25 kg Ammonite: extinct Nautiloid: survived

  13. One other great extinction: the end of the Permian Cause?

  14. Flood basalts

  15. How would volcanic eruptions lead to mass extinction?

  16. How would volcanic eruptions lead to mass extinction?

  17. . . . yet? • methane (CH4): very potent greenhouse gas [23x as potent as carbon dioxide]

  18. 65 mya Eocene Pliocene present Oligo Methane and Eocene Paleocene Pleistocene Oligocene • Clathrates: frozen water surrounding methane • Estimate 500 – 2,500 gigatons (=1012 kg) • If released, could lead to substantial global warming • 55 mya: a thaw leading to methane release?

  19. Evidence of warming:  18 O and  13 C

  20. Possible Permian Scenario

  21. Carbon and extinction?

  22. The next mass extinction? • Habitat destruction • Global warming, ocean acidification Increase in diversity after K/T extinction

  23. References Fastovsky, David E. and Weishampel, David B. 2005. The evolution and extinction of the dinosaurs. Cambridge University Press. Hallam, Tony. 2005. Catastrophes and lesser calamities: the causes of mass extinctions. Oxford University Press. Kolbert, Elizabeth. 2006. The darkening sea: what carbon emissions are doing to the ocean. New Yorker November 20, 2006. Excellent article: something more to worry about even if carbon dioxides doesn’t heat up the earth. Taylor, Paul W. (ed). 2004. Extinctions in the history of life. Cambridge University Press.

  24. Study questions • If the last fossil is dated to 70 million years ago, can we conclude that it went extinct at that time? Why or why not? • Figure 17.21 shows the pattern of extinctions for all organisms. How might the data presented here be misleading? (Think about the biases discussed in topic 13). • How would an asteroid impact lead to extinctions of marine organisms? Of terrestrial organisms? • How could global warming have led to a mass extinction at the end of the Permian? • Ammonites and nautiloids are both molluscs with chambered shells. Ammonites went extinct at the end of the Cretaceous while nautiloids survived. Ammonites produce free-swimming young that feed at the surface and grow rapidly while nautiloids produce a few large eggs that may sit for up to a year in the deep before growing slowly. How might these differences explain the nautiloids survival while the ammonistes went extinct?

  25. Study questions 6. Why are duplications of Hox genes thought to be crucial for the development of bilaterally symmetric animals?

More Related