210 likes | 225 Views
Explore the applicability of ideal hydrodynamics to study strangeness in collisions using RHIC experimental data. Discussions include information obtained on the system, thermalization, final conditions, EoS, and space-time evolution. Analysis covers spectra, elliptic flow, and comparisons with data, aiming to understand the limitations and validity of the ideal assumption.
E N D
Strangeness in Collisions RIKEN-BNL Workshop, February 16-17, 2006 BNL Applicability of (Ideal) Hydrodynamics to (Strangeness) RHIC Data(from an Experimentalist’s View) • Ideal Hydrodynamics • Comparison with data • Spectra • Elliptic flow • Beyond Ideal Hydro • Summary, Conclusion and Open Questions Jeff Speltz Institut de Recherches Subatomiques, Strasbourg
Ideal Fluid Dynamics • What information can we get on the system ? • Early, localthermalization? • QGP? (via the Equation of State: EoS, partonic dof) • Freeze-out conditions of the medium • What is the (important) input required? • Initial conditions : • At what time is the thermalization hypothesis valid (τ0)? • Space–time evolution of the system : • EoS: p = p(e,n) • Final conditions: • When is the thermalization hypothesis not valid anymore (Tdec)? • What does ideal assume ? • Micro p distribution is thermal in (r,t) • Mean Free Path λ≈ 0 • (Does not require chemical equilibrium : Tch) J. Speltz - RIKEN-BNL Workshop, BNL
Hydrodynamical model results P.F. Kolb, J. Sollfrank and U.Heinz, Phys. Rev. C 62 (2000) 054909 P.F. Kolb and R. Rapp, Phys. Rev. C 67 (2003) 044903 P.F. Kolb and U.Heinz, nucl-th/0305084 … • (2+1) hydro (+ partial chemical equilibrium Tch ≈ 165 MeV) • P.F. Kolb, J. Sollfrank, U. Heinz, P. Huovinen, … • For most shown results • Full 3D hydro ( + cascade) • S.A. Bass, C. Nonaka, D. Teaney, J. Lauret, E.V. Shuryak, T. Hirano, M. Gyulassy, … • √sNN = 62.4 GeV results : (Preliminary !) • Using and tuning P.F. Kolb and U.Heinz model: • τ0( 62 GeV) = τ0 (200 GeV) = 0.6 fm/c ; s0 (62 GeV) < s0 (200 GeV) • EoS : 1st order phase transition at Tc. Tc = Tch = 165 MeV; different Tdec C. Nonaka and S.A Bass, nucl-th/0510038 D. Teaney et al., nucl-th/0110037 T. Hirano and M. Gyulassy, nucl-th/0506049 … http://nt3.phys.columbia.edu/OSCAR/models/list.html#AZHYDRO E. Frodermann and U. Heinz, private communication (2005) (s0 : initial (at τ0) entropy density) J. Speltz - RIKEN-BNL Workshop, BNL
π-, K-, p : reasonable agreement Central Spectra : 200 GeV • Best agreement for : Tdec= 100 MeVα = 0.02 fm-1 • α≠ 0 : importance of inital conditions • Only at low pT (pT < 1.5 – 2 GeV/c) • Failing at higher pT (> 2 GeV/c) expected: • Less rescattering Central Data Tdec = 165 MeV Tdec = 100 MeV Thermalization validity limit P.F. Kolb and R. Rapp, Phys. Rev. C 67 (2003) 044903 α : initial (at τ0) transverse velocity : vT(r)=tanh(αr) J. Speltz - RIKEN-BNL Workshop, BNL
π-, K-, p : apparent disagreement? Central Spectra : 62.4 GeV STAR preliminary data • Predictions normalized to data • Limited range of agreement • Hydro starts failing at 62 GeV? • different feed-down treatment in data and hydro? • Different initial / final conditions as at 200 GeV ? • Lower Tdec at 62 GeV ? • Larger τ0 at 62 GeV ? • Increasing τ0 gives much better agreement! • Tdec = 100 MeV J. Speltz - RIKEN-BNL Workshop, BNL
pT = 2 GeV/c Strange Baryons Central Spectra : 62.4 GeV Λ spectra, central STAR preliminary • Small feed-down contribution • Hydro normalized to fit data (no μS) • Best reproduced with • Tdec ≈ 100 MeV • α ≠ 0 fm-1 • Same as for π-, K-, p • Tdec ≈ 164 MeV (decoupling at hadronization): not enough radial flow • True for all strange baryons! Ω- spectra, central Ξ- spectra, central STAR preliminary STAR preliminary τ0 = 0.6 fm/c mT – m0 (GeV/c2) mT – m0 (GeV/c2) J. Speltz - RIKEN-BNL Workshop, BNL
pT = 2 GeV/c Ω- : best for Tdec = 100 MeV Central Spectra : 200 GeV • Only prediction for Ω- • Similar conclusion as 62 GeV • Tdec = 100 MeVbest fits data • Tdec (π, K, p ) ≈ Tdec(Ξ,Ω) (both energies) • But … Ξ,Ω • Supposed smaller cross-section • Less hadronic interactions than π, K ,p • T > 100 MeV (e.g. BW) • Inconsistency? Tdec = 165 MeV Tdec = 100 MeV Ω- spectra, central P.F. Kolb and U. Heinz, nucl-th/0305084 J. Speltz - RIKEN-BNL Workshop, BNL
Blast-Wave Central Spectra E. Schnedermann et al., Phys. Rev. C 48 (1993) 2462 F. Retière and M. Lisa, Phys. Rev. C 70 (2004) 044907 • Blast-Wave: hydro inspired parameterization: • Parameter Tkin • Parameter <βT> • Direct fit (Χ2) on the data • Blast-Wave gives slightly different results than hydro : • Tkin~ Tch > 100 MeV • sensitivity on fit range and on the velocity profile? • Large errors • B-W fit on hydro : Tkin ≠ Tdec(up to 30 MeV difference) • Are Tdec and Tkin the same physical quantity? ~ 160 MeV ~ 125 MeV 100 MeV J. Speltz (for the STAR Collaboration), nucl-ex/0512037 J. Speltz - RIKEN-BNL Workshop, BNL
Compilation of comparisons Central Spectra : 62.4 GeV • Use π, K, p B-W parameters onmulti-strange baryons • Tkin = 90 - 100 MeV • <βT> = 0.57 c • Ξ- and Ω- spectra not reproduced Differences between Ξ-, Ω- and π, K, p mainly due to <βT> (best constrained) J. Speltz (for the STAR Collaboration), nucl-ex/0512037 J. Speltz - RIKEN-BNL Workshop, BNL
b (fm) 2.4 4.1 5.7 7.4 10.5 12.4 0 – 5 % 5 – 10 % 10 – 20 % 20 – 40 % 40 – 60 % 60 – 80 % pT = 2 GeV/c Strange Baryons Spectra, centrality dependence : 62.4 GeV central Λ • pT < 2 GeV/c : good agreement except for very peripheral collisions • Most peripheral not reproduced by hydro (what ever Tdec) • pT > 2 GeV/c : deviation larger for peripheral collisions than for central • τ0 = 0.8 fm/c : even better agreement STAR preliminary hydro Tdec = 100 MeV ; α = 0.02 fm-1 ; τ0 = 0.6 fm/c hydro Tdec = 100 MeV ; α = 0.02 fm-1 ; τ0 = 0.8 fm/c hydro Tdec = 164 MeV ; α = 0.02 fm-1 ; τ0 = 0.6 fm/c peripheral Ξ- Ω- STAR preliminary STAR preliminary Scaling factors applied for better viewing J. Speltz - RIKEN-BNL Workshop, BNL
Tdec = 100 MeV π+ spectra Tdec = 100 MeV proton spectra Thermalization hypothesis less valid with less centrality π+, p Spectra, centrality dependence : 200 GeV • No comparison available for strange baryons • Ideal hydro fails at smaller pT for more peripheral collisions • Basically same results as at 62 GeV P.F. Kolb and R. Rapp, Phys. Rev. C 67 (2003) 044903 • Failing at higher-pT (> 2 GeV) and peripheral collisions expected: • Less rescattering • Smaller system size Central : b = 2.4 fm Semi-central : b = 7 fm Peripheral : b = 9.6 fm J. Speltz - RIKEN-BNL Workshop, BNL
Hydro features Elliptic flow : 200 GeV • Mass hierachy at low pT from hydro in data • Agreement until pT~ 2 GeV/c • Same as for spectra • pT > 2 GeV/c data deviates from hydro • Describtion possible with dissipative effects interactions Anisotropy in momentum v2 Anisotropy in space Self-quenching : Sensitive to early stage of the evolution Anisotropy parameter v2 J. Adams et al., Phys. Rev. C 72 (2005) 014904 D. Molnar and M. Gyulassy, Nucl. Phys. A 697 (2002) 495 Early thermalization : account for large v2 J. Speltz - RIKEN-BNL Workshop, BNL
Flow of s quark Elliptic flow : 200 GeV • All strange particles (including Ω(sss) and φ(ss)) flow (s quark flow as large as for light quarks) • Further indication for thermalization • Indication for collective flow in partonic phase (small hadronic cross-section for Ω,φ, meson/baryon difference) STAR preliminary Hydro: P. Huovinen, private communication M. Oldenburg, QM 2005 J. Speltz - RIKEN-BNL Workshop, BNL
Hydro features Elliptic flow : 62.4 GeV Preliminary • No “real” min-bias measurement • Same features as at 200 GeV: • Mass hierachy • Breakdown at pT~ 2 GeV/c • s quark flow • Same parameters as for spectra • α ≠ 0 • Tdec ≈ 100 MeV • τ0 doesn’t change the conclusion dramatically STAR preliminary J. Speltz - RIKEN-BNL Workshop, BNL
v2 : Centrality and Rapidity dependence Beyond Ideal Hydro To Get the η dependence : 3D model • All results shown so far are from (2+1) hydro calculations P.F. Kolb et al., Nucl. Phys. A 696 (2001) 197 T. Hirano and M. Gyulassy, nucl-th/0506049 T. Hirano, nucl-th/0601006 Assuming thermalization generates too much flow: remedy = cascade J. Speltz - RIKEN-BNL Workshop, BNL
Extending the view: hydro + cascade Beyond Ideal Hydro hybrid • Thermalization, perfect fluidity (hydro) in the sQGP phase • At Tch ≈ Tc : microscopic hadron/parton cascade model (RQMD, UrQMD,…), accounts for viscosity and dissipative effects in the hadronic phase π Hydro + RQMD C. Nonaka and S.A. Bass, nucl-th/0510038 D. Teaney et al., nucl-th/0110037 • No Strangeness Yet: • Spectra: data available; need prediction • d2v2/dpTdNch: results not yet available J. Speltz - RIKEN-BNL Workshop, BNL
CGC+Hydro+Cascade Beyond Ideal Hydro • Full description: modeling also the period beforethermalization: CGC, e-by-e fluctuations (Nexus),… • CGC+hydro+cascade gives a good describtion of dv2/dη data • Strangeness: • Data : Weak decay reconstruction at finite η challenging! h± T. Hirano and M. Gyulassy, nucl-th/0506049 T. Hirano, nucl-th/0601006 J. Speltz - RIKEN-BNL Workshop, BNL
Incomplete Thermalization? Beyond Ideal Hydro • Most models (also hybrids) assume ideal hydro at some point • Ideal Hydro predictions not seen in data: • v4/v22 = 1/2 in ideal hydro (data v4 > v22/2) • v2 /ε (1/S dNch/dy) = cte. N. Borghini, nucl-th/0509092 N. Borghini and J.-Y. Ollitrault, nucl-th/0506045 R.S. Bhalerao et al., Phys. Lett. B 627 (2005) 49 v4/v22 J. Adams et al., Phys. Rev. C 72 (2005) 014904 C. Alt et al., Phys. Rev. C 68 (2003) 034903 More precise mesurements to come (including strangeness) J. Speltz - RIKEN-BNL Workshop, BNL
Conclusion/Summary and open questions • Ideal hydro gives goodagreement with (strangeness) data: • Spectra and Elliptic flow at all RHIC energies (62 GeV to 200 GeV) • EoS including phase transition gives nice accord • Indication for (early) thermalization • Kinetic Freeze-out (Tdec) similar for all particles • clarify on Blast-Wave (more precise measurement, Alice…) • Ω : Mass evolution and test full equilibrium of all light flavors • Interplay of τ0, α and Tdec: is it really understood? (Indications that τ0(62 GeV) > τ0(200GeV) ) • Importance of 62.4 GeV! Possible insight to hydro breakdown • Nothing is really perfect (ideal): • but closest to perfect we have ever seen • Breakdown : hybrid models, viscosity • Test these tools on strangeness J. Speltz - RIKEN-BNL Workshop, BNL
STAR preliminary Mean pT Centrality dependence • Central : Good agreement of <pT> for most particules • Peripheral : <pT> not reproduced • As spectra is not reproduced il y a un double aspect dans la comparaison. Rappelles-toi que Nu vois des courbes "plates" pour les "multi-stranges" comparées aux autres espèces légères... Peut-on lier cette observation au fait que l'hydro fail ??? (à mon avis c'est difficile, mais il faut être conscient de ce pb) P.F. Kolb and U. Heinz, nucl-th/0305084 T. Chujo et al., Nucl. Phys. A 715 (2003) 151 • 62 GeV and 200 GeV results similar Hydro: Tdec = 100 MeV τ0 = 0.6 fm/c J. Speltz - RIKEN-BNL Workshop, BNL
Viscosity Beyond Ideal Hydro • If only small deviations from ideal (non-viscous) behaviour : viscous relativistic hydrodynamics η : shear viscosity s : entropy density Γs/τ~ 0.1 => η/s ~ limit P. Kovtun et al., hep-th/0405231 As η~ 0.1 GeV/fm2 around Tc in QGP and hadronic phase, but η/s large in HG => sudden reduction of s => deconfinement T. Hirano and M. Gyulassy, nucl-th/0506049 and D. Teaney, Phys. Rev. C 68 (2003) 034913 Use of EoS including QGP gives best results with data U. Heinz and P. Kolb, hep-ph/0204061 J. Speltz - RIKEN-BNL Workshop, BNL