210 likes | 529 Views
§6.4 二组分液态部分互溶和完全不互溶系统液 - 气平衡相图. 1. 液体的相互溶解度. 彼此互相饱和的两溶液,称为 共轭溶液 p 影响不大,通常是 T - x 图 —— 溶解度曲线. 6.7.2 二组分液态部分互溶系统的气一液平衡相图. 一般来说,温度升高,液体的相互溶解度加大,当温度达到 T B 时,两液相的组成相同,相点均达到 B 点而成为一相。点 B 称为会溶点,称温度 T B 为临界会溶温度。. B. A. 2. 部分互溶系统的温度-组成图. ( 1 )气相组成位于两液相组成之间的二组分液态部分互溶系统 a — 纯 B 的沸点; b — 纯 A 的沸点
E N D
§6.4 二组分液态部分互溶和完全不互溶系统液-气平衡相图 1. 液体的相互溶解度 彼此互相饱和的两溶液,称为共轭溶液 p影响不大,通常是T-x图——溶解度曲线 6.7.2 二组分液态部分互溶系统的气一液平衡相图 一般来说,温度升高,液体的相互溶解度加大,当温度达到TB时,两液相的组成相同,相点均达到B点而成为一相。点B称为会溶点,称温度TB为临界会溶温度。
B A 2.部分互溶系统的温度-组成图 (1)气相组成位于两液相组成之间的二组分液态部分互溶系统 a—纯B的沸点;b—纯A的沸点 aE、bE—气相线;aM、bN—液相线 aEb以上—g ;aBFM-l1和bAGN-l2 FM、GN—溶解度曲线 aME和bNE—l-g;MNGF—l1-l2 三相点E点:共沸点,即两个液相同时沸腾产生气相。 l1 + l2→ g,F = 2-3+1 = 0, T、组成不变,三相组成分别为xM、xN、xE。 此时温度为共沸温度
(2)一个液相的组成位于另一个液相组成和气相组成之间的二组分部分互溶系统 a—纯B的沸点;b—纯A的沸点 aP、bP-气相线;aN、bM-液相线 FN、GM—溶解度曲线 aPb以上—g;aBFN-l1和bMGA-l2 aNP和bMP—l-g; MNFG—l1-l2 PMN:三相线, l2 → g+l1,F = 2-3+1 = 0, T、组成不变,三相组成分别为xM、xN、xP。
3.完全不互溶系统的温度-组成图 T-x图 a:纯A的沸点; b:纯B的沸点; aE、bE:气相线; aM、bN:液相线。 aEb以上:g; aME:A(l)-g bNE:B(l)-g MNAB:A(l)- B(l)
E点:共沸点 A(l)+ B(l)→ g, 三相共存, F = 0,T、组成不变,三相组成分别为xM、xN、xE。 MN:三相平衡线
§6.5 绘制二组分凝聚系统相图的方法 1.热分析法(适用于熔点高的二元合金相图绘制) 原理:当系统缓而均匀地冷却时,若系统内无相的变化,则温度将随时间而均匀地改变,即在T-t 曲线上呈一条直线,若系统内有相变化,则因放出相变热,使系统温度变化不均匀,在T-t 图上有转折或水平线段,由此判断系统是否有相变化。
323 273 140 140 Cd-Bi二元相图的绘制 (1)标出纯Bi和纯Cd的熔点
323 273 140 140 (2)作含20Cd,70 Cd的步冷曲线
323 273 140 140 (3)作含40Cd的步冷曲线
H 323 A 273 熔化物(单相) F T/K C 熔化物+Cd Bi+熔化物 E D G 140 0 0.2 0.4 0.6 0.8 1.0 Bi Cd 100% 100% (4)完成Bi-Cd T-x相图
2.溶解度法(适用于水-盐系统) 在不同温度下测定盐的溶解度,根据大量实验数据,绘制出水-盐的T-x图。 表6.5.1 不同温度下(NH4)2SO4在 水中的溶解度
N S O 硫酸铵固+溶液 Q 溶液(单相) T/K x L y z 冰+溶液 W’ c A B 固体 A B H2O (NH4)2SO4 (NH4)2SO4的质量分数 (NH4)2SO4- H2O的相图 溶解度法绘制相图
§6.6 二组分简单凝聚系统固-液平衡相图 二组份简单凝聚系统:p影响小,T—x 相图 1.固态完全不互溶的二组 分凝聚系统 三相线:MEN 低共熔过程: 低共熔点(eutectic point): 液相能够存在的最低温度,也是两个固相能够同时熔化的最低温度。如点E 图6.6.1 Bi-Cd相图
2.固态完全互溶的二组分凝聚系统相图 两个组分在固态和液态时能彼此按任意比例互溶而不生成化合物,也没有低共熔点,称为完全互溶固溶体。Au-Ag,Cu-Ni,Co-Ni体系属于这种类型。 以Au-Ag相图为例,梭形区之上是熔液单相区,之下是固体溶液(简称固溶体)单相区,梭形区内是固-液两相共存,上面是液相组成线,下面是固相组成线。
3.固态部分互溶的二组分凝聚系统相图 (1) 系统有一低共熔点 在相图上有三个单相区: AEB线以上,熔化物(L) AJF以左, 固溶体(1) BCG以右,固溶体 (2) 有三个两相区: AEJ区, L +(1) BEC区, L + (2) FJECG区,(1)+ (2) AE,BE是液相组成线;AJ,BC是固溶体组成线;JEC线为三相共存线,即(1)、(2)和组成为E的熔液三相共存,E点为(1)、(2)的低共熔点。
(2)系统有一转熔温度 相图上有三个单相区:BCA线以左,熔化物L ADF区, 固溶体(1) BEG以右, 固溶体(2) 有三个两相区 BCE L+(2) ACD L+(1) FDEG(1)+(2) CDE是三相线: (1)熔液(组成为C), (2)固溶体(1)(组成为D) (3)固溶体(2)(组成为E)三相共存。CDE对应的温度称为转熔温度
§6.7 生成化合物的二组分凝聚系统相图 1.生成稳定化合物的二组分凝聚系统相图 二组分A、B能够发生化学反应生成产生C时,按化合物C的稳定程度分为稳定化合物和不稳定化合物。所谓稳定化合物是指该化合物加热到熔点时不分解。 这张相图可以看作A与C和C与B的两张简单的低共熔相图合并而成,所有的相图分析与简单的二元低共熔相图类似。
2.生成不稳定化合物的二组分凝聚系统相图 不稳定化合物仅存在于固态、不能存在于液态。将化合物加热,则不到熔点就会分解为一个固态和一个液态。 C没有自己的熔点,将C加热,到O点温度时分解成A和组成为N的熔液,所以将O点的温度称为转熔温度(peritectic temperature)。 FON线也称为三相线,由A(s),C(s)和组成为N的熔液三相共存,与一般三相线不同的是:组成为N的熔液在端点,而不是在中间。
6.8 杠杆规则及其应用 1.杠杆规则 设m为质量,ω为质量分数, 得 得杠杆规则
当组成以质量分数表示时,两相的质量反比于系统点到两个相点线段的长度。当组成以质量分数表示时,两相的质量反比于系统点到两个相点线段的长度。 当组成以摩尔分数表示时,两相的物质的量反比于系统点到两个相点线段的长度。 杠杆规则是根据物质守恒原理得出的,适用于求任何两相间平衡两相的数量。
2.杠杆规则在接近三相平衡温度时的应用(略) 3.杠杆规则在三相线上相变化时的应用 例6.8.1(p247)