540 likes | 701 Views
The “Logic” of Reachability David E. Smith Ari K. Jónsson. Apologies. No results ideas & formalism Adverse reactions “Logic”. Outline. Background & Motivation Simple Reachability Mutual Exclusion “Practical Matters”. Expand plan graph Derive mutex relationships
E N D
Apologies • No results • ideas & formalism • Adverse reactions • “Logic”
Outline Background & Motivation Simple Reachability Mutual Exclusion “Practical Matters”
Expand plan graph • Derive mutex relationships • If goals are present & consistent • search for a solution Graphplan
Expand plan graph • Derive mutex relationships • If goals are present & consistent • search for a solution Graphplan Reachability! (optimistic achivability)
Why Reachability? • Pruning • ¬reachable ¬achievable • Guidance • distance
TGP • Actions • Real duration • Concurrent Heater Thrust closevalve comlink
TGP Limitations • Actions • Preconditions hold throughout • Effects occur at end • Affected propositions undefined during • No exogenous conditions pre1 pre2 A eff1 eff2
Monotonicity of Reachability 0 1 2 3 x p q ¬x r … x p q ¬x … x p q ¬x … A A A B B B ¬x … C Propositions & actions monotonically increase
Monotonicity of Mutex 0 1 2 3 x p q ¬x r … x p q ¬x … x p q ¬x … A A A B B B ¬x … C Mutex relationships monotonically decrease
Cyclic Plan Graph Propositions Actions x1 p1 q1 ¬x0 r3 … A0 B0 C2 Earliest start times
Cyclic Plan Graph Propositions Actions x1 p1 q1 ¬x0 r3 … A0 B0 C2 Earliest end time 2 2
≥5A pre1 pre2 cond3 A eff A –5A +5A Impact? • Actions • Preconditions hold throughout • Effects occur at end • Affected propositions undefined during • Exogenous Conditions t=0600z t=1300z Closed(SJC)
Windows of Reachability Actions Propositions A[0,3],[6,9] B[11,] C[…]… … p[0,5],[8.1,16] q[2,17]… r[3,]… …
Windows of Mutex Actions Propositions [3,4]x[11,] A[0,3],[6,9] B[11,] C[…]… … p[0,5],[8.1,16] q[2,17]… r[3,]… … [0,3]x[11,] [0,3]x[3,4]
≥5A r Action Model cond1 Duration Parallel (pre) Conditions over intervals Effects over intervals cond2 cond3 A eff A +5A –5A • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 p A ¬ r r e
r Semantics P stops holding • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 p A r ¬ r e
r Semantics p stops holding • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 p ??? A ??? ¬ r r ??? e ??? Incomplete
t=0517z t=0642z Visible(NGC132) t=0600z t=1300z Closed(SJC) Exogenous Conditions Inititial Conditions • X • cond: • eff: At(Pkg1, BOS-PO);0 • At(Truck1, BOS);0 • Closed(SJC);[0600,1300] • Visible(NGC132);[0517,0642] • … t=0 At(Pkg1, BOS-PO) At(Truck1, BOS)
Outline Motivation Simple Reachability Mutual Exclusion Practical Matters
Possibility & Reachability (p;t) p is logically possible at t ∆(p;t) p is reachable at t (rich;tomorrow) ¬∆(rich;tomorrow)
Possibility & Reachability (p;t) p is logically possible at t ∆(p;t) p is reachable at t Extend to Intervals (p;i) t i (p;t) ∆(p;i) t i ∆ (p;t)
Basic Axioms Facts are possible & reachable p;i (p;i) p;i ∆(p;i) Negations are not … p;i t i ¬(¬p;t) p;i t i ¬∆(¬p;t) Transitivity ∆(p;t) (p;t q;t’) ∆(q;t’)
Basic Axioms Actions a;t Cond(a;t) Eff(a;t) Exogenous conditions X;0 Closure of X (Eff(x;0) = ¬p;t)— (p;i) | |\
0 1 2 3 4 5 6 Example r X;0 p p
0 1 2 3 4 5 6 Closure r X;0 p p p p closure r
0 1 2 3 4 5 6 Basic ∆ r basic ∆p ∆ p r X;0 p p p p closure r
0 1 2 3 4 5 6 Persistence ∆(p;i) meets(i,j) (p;j) ∆(p;i||j) ∆ r basic ∆p ∆ p r X;0 p p p p closure r
0 1 2 3 4 5 6 Persistence ∆(p;i) meets(i,j) (p;j) ∆(p;i||j) basic & persist ∆ r ∆p ∆p r X;0 p p p p closure r
Actions Reachability ∆Cond(a;t)Eff(a;t) ∆(a;t) Conjunctive optimism ∆p1;i1 … ∆pn;in ∆(p1;i1 … pn;in)
p A ¬ r r e r 0 1 2 3 4 5 6 Action Application ∆Cond(a;t)Eff(a;t) ∆(a;t) • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 ∆A ∆ r ∆p ∆p
p A ¬ r r e r 0 1 2 3 4 5 6 Action Application ∆Cond(a;t)Eff(a;t) ∆(a;t) • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 ∆ e ∆ ¬ r ∆A ∆ r ∆p ∆p
p A ¬ r r e r 0 1 2 3 4 5 6 Persistence Again ∆(p;i) meets(i,j) (p;i) ∆(p;i||j) ∆ e ∆ ¬ r ∆A ∆ r ∆p ∆p
p A ¬ r r e r Persistence (revised) ∆(p;i) meets(i,j) (p;i) ∆(p;i||j) a;t ∆(a;t) p;i PersistEff(a;t) meets(i,j) (p;i) ∆(p;i||j)
0 1 2 3 4 5 6 Persistence a;t ∆(a;t) p;i PersistEff(a;t) meets(i,j) (p;i) ∆(p;i||j) ∆ e ∆ ¬ r ∆A ∆ r ∆p ∆p
Outline Motivation Simple Reachability Mutual Exclusion Practical Matters
Mutual Exclusion M(p1;t1, …, pn;tn) Intervals M(p1;i1, …, pn;nn) t1 i1, …, tn in M(p1;t1, …, pn;tn) Conjunctive optimism (∆p1;i1 … ∆pn;in ) ¬M(p1;i1, …, pn;nn) ∆(p1;i1 … pn;in)
Logical Mutex ¬(1 … n) M(1, …, n) Consequences M(p;t, ¬p;t)
Consequences ¬(1 … n) M(1, …, n) Consequences • A • cond: p; … • eff: e; … A;t p;t+ A;t e;t+e M(A;t, ¬p;t+) M(A;t, ¬e;t+)
Consequences ¬(1 … n) M(1, …, n) Consequences • A • cond: p; … A;t p;t+ B;t ¬p;t+e • B • cond: ¬p; … M(A;t, B;t+–)
Implication Mutex M(1, …, n) ( 1) M(, …, n)
Implication Mutex Example M(1, …, n) (1 1) M(1, …, n) M(1, …, n) ( 1) M(, …, n) p;1 q;1 A;1 B;1 e;2 f;2 Example M(p;1,q;1) • A • cond: p;0 • eff: e;1 • B • cond: q;0 • eff: f;1
Implication Mutex Example M(1, …, n) (1 1) M(1, …, n) M(1, …, n) ( 1) M(, …, n) p;1 q;1 A;1 B;1 e;2 f;2 Example M(p;1,q;1) • A • cond: p;0 • eff: e;1 A;t p;t • B • cond: q;0 • eff: f;1 B;t q;t
Implication Mutex Example M(1, …, n) (1 1) M(1, …, n) M(1, …, n) ( 1) M(, …, n) p;1 q;1 A;1 B;1 e;2 f;2 Example M(p;1,q;1) • A • cond: p;0 • eff: e;1 A;t p;t M(A;1,q;1) • B • cond: q;0 • eff: f;1 B;t q;t M(p;1,B;1)
Implication Mutex Example M(1, …, n) (1 1) M(1, …, n) M(1, …, n) ( 1) M(, …, n) p;1 q;1 A;1 B;1 e;2 f;2 Example M(p;1,q;1) • A • cond: p;0 • eff: e;1 A;t p;t M(A;1,q;1) • B • cond: q;0 • eff: f;1 B;t q;t M(p;1,B;1) M(A;1,B;1)
Implication Mutex for Intervals M(1, …, n) ( 1) M(, …, n) M(1;i1, …, n;in) j= {t: ;t t1 i1 1;t1} M(;j, …, n;in) p;[1,3) q;[2,3) A;[1,3) B;[2,3) e;… f;…
Explanatory Mutex {( 1) M(, …, n)} M(1, …, n) If “all ways of proving” 1 are mutex with 2, …, n M(1, …, n) A p B p;1 q;1 A;1 B;1 e;2 f;2 A p
Outline Motivation Simple Reachability Mutual Exclusion Practical Matters
Limiting Mutex Reachable propositions Time spread M(p;2, q;238) [0,2] [236,240] p q A Mutex spread theorem ?
CSP? Actions Propositions A[0,3],[6,9] B[11,] C[…]… … p[0,5],[8.1,16] q[2,17]… r[3,]… …