1 / 54

The “Logic” of Reachability David E. Smith Ari K. Jónsson

The “Logic” of Reachability David E. Smith Ari K. Jónsson. Apologies. No results ideas & formalism Adverse reactions “Logic”. Outline. Background & Motivation Simple Reachability Mutual Exclusion “Practical Matters”. Expand plan graph Derive mutex relationships

anevay
Download Presentation

The “Logic” of Reachability David E. Smith Ari K. Jónsson

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The “Logic” of ReachabilityDavid E. SmithAri K. Jónsson

  2. Apologies • No results • ideas & formalism • Adverse reactions • “Logic”

  3. Outline Background & Motivation Simple Reachability Mutual Exclusion “Practical Matters”

  4. Expand plan graph • Derive mutex relationships • If goals are present & consistent • search for a solution Graphplan

  5. Expand plan graph • Derive mutex relationships • If goals are present & consistent • search for a solution Graphplan Reachability! (optimistic achivability)

  6. Why Reachability? • Pruning • ¬reachable  ¬achievable • Guidance • distance

  7. TGP • Actions • Real duration • Concurrent Heater Thrust closevalve comlink

  8. TGP Limitations • Actions • Preconditions hold throughout • Effects occur at end • Affected propositions undefined during • No exogenous conditions pre1 pre2 A eff1 eff2

  9. Monotonicity of Reachability 0 1 2 3 x p q ¬x r … x p q ¬x … x p q ¬x … A A A B B B ¬x … C Propositions & actions monotonically increase

  10. Monotonicity of Mutex 0 1 2 3 x p q ¬x r … x p q ¬x … x p q ¬x … A A A B B B ¬x … C Mutex relationships monotonically decrease

  11. Cyclic Plan Graph Propositions Actions x1 p1 q1 ¬x0 r3 … A0 B0 C2 Earliest start times

  12. Cyclic Plan Graph Propositions Actions x1 p1 q1 ¬x0 r3 … A0 B0 C2 Earliest end time 2 2

  13. ≥5A pre1 pre2 cond3 A eff A –5A +5A Impact? • Actions • Preconditions hold throughout • Effects occur at end • Affected propositions undefined during • Exogenous Conditions t=0600z t=1300z Closed(SJC)

  14. Windows of Reachability Actions Propositions A[0,3],[6,9] B[11,] C[…]… … p[0,5],[8.1,16] q[2,17]… r[3,]… …

  15. Windows of Mutex Actions Propositions [3,4]x[11,] A[0,3],[6,9] B[11,] C[…]… … p[0,5],[8.1,16] q[2,17]… r[3,]… … [0,3]x[11,] [0,3]x[3,4]

  16. ≥5A r Action Model cond1 Duration Parallel (pre) Conditions over intervals Effects over intervals cond2 cond3 A eff A +5A –5A • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 p A ¬ r r e

  17. r Semantics P stops holding • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 p A r ¬ r e

  18. r Semantics p stops holding • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 p ??? A ??? ¬ r r ??? e ??? Incomplete

  19. t=0517z t=0642z Visible(NGC132) t=0600z t=1300z Closed(SJC) Exogenous Conditions Inititial Conditions • X • cond: • eff: At(Pkg1, BOS-PO);0 • At(Truck1, BOS);0 • Closed(SJC);[0600,1300] • Visible(NGC132);[0517,0642] • … t=0 At(Pkg1, BOS-PO) At(Truck1, BOS)

  20. Outline Motivation Simple Reachability Mutual Exclusion Practical Matters

  21. Possibility & Reachability (p;t)  p is logically possible at t ∆(p;t)  p is reachable at t (rich;tomorrow) ¬∆(rich;tomorrow)

  22. Possibility & Reachability (p;t)  p is logically possible at t ∆(p;t)  p is reachable at t Extend to Intervals (p;i)   t i (p;t) ∆(p;i)   t i ∆ (p;t)

  23. Basic Axioms Facts are possible & reachable p;i  (p;i) p;i  ∆(p;i) Negations are not … p;i   t i ¬(¬p;t) p;i   t i ¬∆(¬p;t) Transitivity ∆(p;t) (p;t  q;t’)  ∆(q;t’)

  24. Basic Axioms Actions a;t  Cond(a;t)  Eff(a;t) Exogenous conditions X;0 Closure of X (Eff(x;0) = ¬p;t)— (p;i) | |\

  25. 0 1 2 3 4 5 6 Example r X;0 p p

  26. 0 1 2 3 4 5 6 Closure r X;0 p p  p  p closure  r

  27. 0 1 2 3 4 5 6 Basic ∆ r basic ∆p ∆ p r X;0 p p  p  p closure  r

  28. 0 1 2 3 4 5 6 Persistence ∆(p;i) meets(i,j) (p;j) ∆(p;i||j) ∆ r basic ∆p ∆ p r X;0 p p  p  p closure  r

  29. 0 1 2 3 4 5 6 Persistence ∆(p;i) meets(i,j) (p;j) ∆(p;i||j) basic & persist ∆ r ∆p ∆p r X;0 p p  p  p closure  r

  30. Actions Reachability ∆Cond(a;t)Eff(a;t) ∆(a;t) Conjunctive optimism ∆p1;i1 … ∆pn;in  ∆(p1;i1 … pn;in)

  31. p A ¬ r r e r 0 1 2 3 4 5 6 Action Application ∆Cond(a;t)Eff(a;t) ∆(a;t) • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 ∆A ∆ r ∆p ∆p

  32. p A ¬ r r e r 0 1 2 3 4 5 6 Action Application ∆Cond(a;t)Eff(a;t) ∆(a;t) • A • cond: r;0, p;[0,2] • eff: r;(0,2), r;2, e;2 ∆ e ∆ ¬ r ∆A ∆ r ∆p ∆p

  33. p A ¬ r r e r 0 1 2 3 4 5 6 Persistence Again ∆(p;i) meets(i,j) (p;i) ∆(p;i||j) ∆ e ∆ ¬ r ∆A ∆ r ∆p ∆p

  34. p A ¬ r r e r Persistence (revised) ∆(p;i) meets(i,j) (p;i) ∆(p;i||j) a;t ∆(a;t) p;i  PersistEff(a;t)  meets(i,j) (p;i) ∆(p;i||j)

  35. 0 1 2 3 4 5 6 Persistence a;t ∆(a;t) p;i  PersistEff(a;t)  meets(i,j) (p;i) ∆(p;i||j) ∆ e ∆ ¬ r ∆A ∆ r ∆p ∆p

  36. Outline Motivation Simple Reachability Mutual Exclusion Practical Matters

  37. Mutual Exclusion M(p1;t1, …, pn;tn) Intervals M(p1;i1, …, pn;nn)   t1 i1, …, tn in M(p1;t1, …, pn;tn) Conjunctive optimism (∆p1;i1 … ∆pn;in ) ¬M(p1;i1, …, pn;nn)  ∆(p1;i1 … pn;in)

  38. Logical Mutex ¬(1  … n)  M(1, …, n) Consequences M(p;t, ¬p;t)

  39. Consequences ¬(1  … n)  M(1, …, n) Consequences • A • cond: p; … • eff: e; … A;t  p;t+ A;t  e;t+e M(A;t, ¬p;t+) M(A;t, ¬e;t+)

  40. Consequences ¬(1  … n)  M(1, …, n) Consequences • A • cond: p; … A;t  p;t+ B;t  ¬p;t+e • B • cond: ¬p; … M(A;t, B;t+–)

  41. Implication Mutex M(1, …, n)  ( 1)  M(, …, n)

  42. Implication Mutex Example M(1, …, n)  (1 1)  M(1, …, n) M(1, …, n)  ( 1)  M(, …, n) p;1 q;1 A;1 B;1 e;2 f;2 Example M(p;1,q;1) • A • cond: p;0 • eff: e;1 • B • cond: q;0 • eff: f;1

  43. Implication Mutex Example M(1, …, n)  (1 1)  M(1, …, n) M(1, …, n)  ( 1)  M(, …, n) p;1 q;1 A;1 B;1 e;2 f;2 Example M(p;1,q;1) • A • cond: p;0 • eff: e;1 A;t  p;t • B • cond: q;0 • eff: f;1 B;t  q;t

  44. Implication Mutex Example M(1, …, n)  (1 1)  M(1, …, n) M(1, …, n)  ( 1)  M(, …, n) p;1 q;1 A;1 B;1 e;2 f;2 Example M(p;1,q;1) • A • cond: p;0 • eff: e;1 A;t  p;t M(A;1,q;1) • B • cond: q;0 • eff: f;1 B;t  q;t M(p;1,B;1)

  45. Implication Mutex Example M(1, …, n)  (1 1)  M(1, …, n) M(1, …, n)  ( 1)  M(, …, n) p;1 q;1 A;1 B;1 e;2 f;2 Example M(p;1,q;1) • A • cond: p;0 • eff: e;1 A;t  p;t M(A;1,q;1) • B • cond: q;0 • eff: f;1 B;t  q;t M(p;1,B;1) M(A;1,B;1)

  46. Implication Mutex for Intervals M(1, …, n)  ( 1)  M(, …, n) M(1;i1, …, n;in)  j= {t: ;t  t1 i1 1;t1}  M(;j, …, n;in) p;[1,3) q;[2,3) A;[1,3) B;[2,3) e;… f;…

  47. Explanatory Mutex  {( 1)  M(, …, n)}  M(1, …, n) If “all ways of proving” 1 are mutex with 2, …, n  M(1, …, n) A p B p;1 q;1 A;1 B;1 e;2 f;2 A p 

  48. Outline Motivation Simple Reachability Mutual Exclusion Practical Matters

  49. Limiting Mutex Reachable propositions Time spread M(p;2, q;238) [0,2] [236,240] p q A Mutex spread theorem ?

  50. CSP? Actions Propositions A[0,3],[6,9] B[11,] C[…]… … p[0,5],[8.1,16] q[2,17]… r[3,]… …

More Related