1 / 57

Probability

Probability. Chapter 6 – The Study of Randomness. Probability. The idea of probability is that chance behavior is unpredictable on the short run, but has a regular pattern in the long run…. Randomness:.

angie
Download Presentation

Probability

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Probability Chapter 6 – The Study of Randomness

  2. Probability • The idea of probability is that chance behavior is unpredictable on the short run, but has a regular pattern in the long run…

  3. Randomness: • Behavior is random if, while individual outcomes are uncertain, for a large number of repetitions, outcomes are regularly distributed. • Example: If I roll a die once, I can’t predict with any certainty what number it will land on, but if I roll sixty times, I can expect it to land on 1 ten times, 2 ten times, 3 ten times, etc.

  4. Long vs Short Run Behavior • In the short run, we have no idea what is going to happen with a random event… • BUT, in the long run, a pattern emerges.

  5. Probability • The probability of an outcome is the proportion of times the outcome would occur for a large number of repetitions. (long term relative frequency) • Example: The probability of a die landing on 4 is the proportion of times a die lands on 4 for a large number of repetitions.

  6.  Sample Space • The set of all possible outcomes of an event is the sample space,S , of the event. • Example: For the event “roll a die and observe what number it lands on” the sample space contains all possible numbers the die could land on. • S = { 1, 2, 3, 4, 5, 6 }

  7. Events • Example 1: When flipping three coins, an event may be getting all heads (HHH). • In this case, the event is one outcome from the sample space. • Example 2: When flipping three coins, an event may be getting two tails. • In this case, the event is a set of outcomes (HTT, TTH, THT) from the sample space. • An event is an outcome (or a set of outcomes) from a sample space. • An event is usually denoted by a capital letter. For example, call getting two tails event A. • The probability of event A is denoted P(A).

  8. Sample Space – Flip Three Coins Event B = Two Tails Event A = Three Heads P(B) = 3 / 8 = 0.375 P(A) = 1 / 8 = 0.125

  9. Probability Rules: • The probability of any event is between 0 and 1, inclusive. • A probability of 0 indicates the event will never occur. • A probability of 1 indicates the event will always occur. •  If S is the sample space, then P(S) = 1. Some outcome in the sample space will occur.

  10.  Probability Rules • The probability that event A does not occur is one minus the probability that A does occur. That A will not occur is called the complement of A and is denoted Ac. • Example: When flipping two coins, the probability of getting two heads is 0.25. The probability of not getting two heads is 1 – 0.25 = 0.75.

  11. Sample Space – Flip Three Coins P(Ac)=? Event A = Three Heads P(A) = 1 / 8 = 0.125 P(Ac) = 1-P(A) P(Ac) = 1-0.125 = 0.875

  12. Disjoint Events • If events A and B are disjoint they have no outcomes in common. DISJOINT NOT DISJOINT

  13.  Disjoint Events Example: • Let event A be rolling a die and landing on an even number. • Let event B be rolling a die and landing on an odd number. • The outcomes for A are {2, 4, 6} • The outcomes for B are {1, 3, 5} • Events A and B are disjoint because they have no outcomes in common. • So the probability of A or B (landing on either an even or an odd number) equals the probability of A plus the probability of B. ONLY IF A and B are DISJOINT

  14. Disjoint • Another common term that means the SAME thing as DISJOINT is Mutually Exclusive. • DISJOINT = MUTUALLY EXCLUSIVE • The terms are interchangeable…

  15. Independent Events • Events A and B are independent if knowing that one occurs does not change the probability that the other occurs. Example: • Roll a yellow die and a red die. • Event A is the yellow die landing on an even number • Event B is the red die landing on an odd number. • These two events are independent, because the outcome of A does not change the probability of B.

  16.  Independent Events • If events A and B are independent, then the probability of A and B equals the probability of A multiplied by the probability of B. ONLY IF A and B are INDEPENDENT

  17.  Independent Events • Example: The probability than the yellow die lands on an even number and the red die lands on an odd number is:

  18.  Independent Events • If events A and B are independent, • then their complements, Ac and Bc are also independent, • and Ac is independent of B • and Bc is independent of A.

  19. Review • What does Mutually Exclusive mean? • What does Independent mean?

  20. stuff that can help with Probability • Venn DiagramFood that students ate. • How many students are represented? • 140 • How many students ate curly fries? • 62 • How many students did not eat a hot dog? • 92 • How many students ate a Hamburger and Fries? • 46 • Are Hamburgers and hot dogs disjoint? • NO! • What is the probability of randomly selecting a student that had a hot dog and curly fries? • 11/140 = 0.07857 34 45 12 1 10 6 25 7

  21. stuff that can help with Probability • Tree DiagramFlipping three coins. Sample Space 0.5 Probabilities 0.125 0.5 0.5 0.125 0.5 0.5 0.5 0.125 0.5 0.125 0.5 0.125 0.5 0.5 0.5 0.125 0.5 0.5 0.125 0.5 0.125

  22. Multiplication Principle • To determine the number of outcomes in a sample space that has multiple actions • for example, roll 3 dice or flip four coins, • you can find the total number of outcomes by multiplying the individuals. • roll three dice: 6 outcomes X 6 outcomes X 6 outcomes = 216 total • flip four coins: 2 outcomes X 2 outcomes X 2 outcomes X 2 outcomes = 16 total

  23. Replacement • Replacement • when drawing cards, or numbers from a hat, etc. and return the number used. • Without Replacement • when drawing cards, or numbers from a hat, etc. and you do not return the previously drawn item. This changes the number of total outcomes. • Example: Draw three cards from a standard deck of cards without replacement. How many outcomes are there? 52 X 51 X 50 = 132,600 total outcomes

  24. Probability Model • This table is an example of a probability model This model shows the probability of a student being in a certain class if selected at random from a high school. • What do you notice about the sum of the probabilities? • Find each of the following… P(Freshman) P(Seniorc)

  25. General Probability • Equally Likely Outcomes • If a random phenomenon has k possible outcomes, all equally likely, then each individual outcome has probability 1/k.

  26. General Probability • Event Probabilities • To find the probability of an event, take the number of outcomes in event A and divide it by the total number of outcomes in the sample space S.

  27. Probability Symbols • OR • Union of two or more events • AND • Intersection of two or more events

  28. Probability Symbols P(A or B) P(A and B)

  29. Probability (Union) P(A or B)

  30. Probability (Intersection) P(A and B)

  31. Review • What does Mutually Exclusive mean?

  32. Addition Rule P(AB) = P(A) + P(B) – P(AB) Special Case: Disjoint • P(AB) = P(A) + P(B) • No overlap means P(AB) = 0

  33. P(A) = 0.3 P(B) = 0.4 P( A or B ) = 0.65 Are events A and B mutually exclusive? How do you know? Sample Question

  34. Independent vs Disjoint • If events A and B are DISJOINT, then the fact that A occurs tells us that B can not occur… • Disjoint events are NOT Independent

  35. Independent Events - Cable • The first transatlantic telegraph cable was laid in 1866. The first telephone cable across the Atlantic did not appear until 1956 – the barrier was designing “repeaters,” amplifiers needed to boost the signal, that could operate for years on the sea bottom. The first cable had 52 repeaters. The copper cable, laid in 1963 and retired in 1994, had 662 repeaters. The first fiber optic cable, laid in 1988 and has 109 repeaters. There are now more than 400,000 miles of undersea cable, with more being laid every year to handle the flood of internet traffic.

  36. Independent Events - Cable • Repeaters in undersea cables must be very reliable. To see why, suppose that each repeater has probability 0.999 of functioning without failure for 25 years. Repeaters fail independently of each other. • What is the probability that two repeaters will work for 25 years? • 10 repeaters? • 662 repeaters?

  37. Aids Testing Example • P354 (6.15)

  38. Conditional Probabilities • The probability that event A occurs if we know for certain that event B will occur is called conditionalprobability. • The conditional probability of A given B is denoted: P( A | B ) • If events A and B are independent, then knowing that event B will occur does not change the probability of A so for independent events:

  39.  Conditional Probabilities • Example: When flipping a coin twice, what is the probability of getting heads on the second flip if the first flip was a head? • Event A: getting head on first flip • Event B: getting head on second flip • Events A and B are independent since the outcome of the first flip does not change the probability of the second flip, so…

  40. Venn Diagram: Flip of 2 Fair Coins 0.25 0.25 0.25 P(A) = 0.5 P(B) = 0.5 0.25

  41. Multiplication Rule P(AB) = P(A)  P(B|A) Special Case: Independent • P(AB) = P(A)P(B) • Knowing A occurred does not effect B so…P(B|A) = P(B)

  42. Page 357 – 6.36 Car Colors • Choose a new car or light truck at random and note its color. Here are the probabilities of the most popular colors for vehicles in North America in 2000.

  43. 6.36 Car Colors • P(color other than listed) = = 1-(0.176+0.172+0.113+0.089+0.088+0.067) = 0.295 • P(Silver or White) = = P(Silver) + P(White) *if disjoint = 0.176 + 0.172 = 0.348

  44. 6.36 Car Colors • Let S = Silver and W = White • P(SS) = P(S)P(S) *if independent = (0.176)(0.176) = 0.030976 • P(W  W) = P(W)P(W) *if independent = (0.172)(0.172) = 0.029584 • P((S  S)(W W)) = P(S S)+P(W W) = 0.0605

  45. Page 357 – 6.37 New Census • The 2000 census allowed each person to choose one or more from a long list of races. That is, in the eyes of the Census Bureau, you belong to whatever race or races you say you belong to. “Hispanic/Latino” is a separate category; Hispanics may be of any race. If we choose a resident of the United States at random, the 2000 census gives these probabilities

  46. Page 357 – 6.37 New Census • Let A be the event that a randomly chosen American is Hispanic and let B be the event that the person chosen is white. • P(S) = 1 • P(A) = 0.000+0.003+0.060+0.062 = 0.125 • P(BC)= 1 – (0.060+0.691) = 0.249 • P(Non-Hispanic White) P(ACB) =0.691

  47. 6.41 – Table to find Probabilities • The type of medical care a patient receives may vary with the age of the patient. A large study of women who had a breast lump investigated whether or not each woman received a mammogram and a biopsy when the lump was discovered.

  48. 6.41 – Table to find Probabilities • P(Under65) = 0.321+0.124 = 0.445 • P(65+) = 0.365+0.190 = 0.555 • P(Yes) = 0.321+0.365 = 0.686 • P(No) = 0.124+0.190 = 0.314 A = 65+ B = YES

  49. 6.41 – Table to find Probabilities • Are A & B Independent? • P(AB) ?=? P(A)P(B) From Table P(A B) = 0.365 Mult Rule P(A) = 0.555 P(B) = 0.686 P(A)P(B) = (0.555)(0.686) = 0.3807 • The Values are not the same so they are NOTIndependent!

More Related