1 / 28

Pneumatic Power

Pneumatic Power. Pneumatic Power. Pneumatic Power. Pneumatics The use of a gas flowing under pressure to transmit power from one location to another Gas in a pneumatic system behaves like a spring since it is compressible. Pneumatics vs. Hydraulics. Pneumatic Systems . . .

anila
Download Presentation

Pneumatic Power

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pneumatic Power

  2. Pneumatic Power

  3. PneumaticPower Pneumatics The use of a gas flowing under pressure to transmit power from one location to another Gas in a pneumatic system behaves like a spring since it is compressible.

  4. Pneumaticsvs.Hydraulics Pneumatic Systems . . . Use a compressible gas Possess a quicker, jumpier motion Are not as precise Require a lubricant Are generally cleaner Often operate at pressures around 100 psi Generally produce less power

  5. EarlyPneumaticUses Bellows Tool used by blacksmiths and smelters for working iron and other metals

  6. EarlyPneumaticUses Otto von Guericke Showed that a vacuum can be created Created hemispheres held together by atmospheric pressure

  7. EarlyPneumaticUses America’s First Subway Designed by Alfred Beach Built in New York City Completed in 1870 312 feet long, 8 feet in diameter Closed in 1873

  8. PropertiesofGases Gases are affected by 3 variables • Temperature (T) • Pressure (p) • Volume (V) Gases have no definite volume Gases are highly compressible Gases are lighter than liquids

  9. Properties of Gases Absolute Pressure Gauge Pressure: Pressure on a gauge does not account for atmospheric pressure on all sides of the system Absolute Pressure: Atmospheric pressure plus gauge pressure Gauge Pressure + Atmospheric Pressure = Absolute Pressure

  10. Properties of Gases Absolute Pressure Pressure (p) is measured in pounds per square inch (lb/in.2 or psi) Standard atmospheric pressure equals 14.7 lb/in.2 If a gauge reads 120.0 psi, what is the absolute pressure? 120.0 lb/in.2 + 14.7 lb/in.2 = 134.7 lb/in.2

  11. Properties of Gases Absolute Temperature 0°F does not represent a true 0° Absolute Zero = -460.°F Absolute Temperature is measured in degrees Rankine (°R) °R = °F + 460. If the temperature of the air in a system is 65 °F, what is the absolute temperature? Answer: 65 °F + 460. = 525 °R

  12. Pascal’s Law Pressure exerted by a confined fluid acts undiminished equally in all directions. Pressure: The force per unit area exerted by a fluid against a surface

  13. Pascal’s Law Example How much pressure can be produced with a 3 in. diameter (d) cylinder and 50 lb of force? d = 3 in. p = ? F = 50 lb A = ?

  14. Perfect Gas Laws The perfect gas laws describe the behavior of pneumatic systems Boyle’s Law Charles’ Law Gay-Lussac’s Law

  15. Boyle’s Law NASA The volume of a gas at constant temperature varies inversely with the pressure exerted on it. p1 (V1) = p2 (V2)

  16. Boyle’s Law Example A cylinder is filled with 40. in.3 of air at a pressure of 60. psi. The cylinder is compressed to 10. in.3. What is the resulting absolute pressure? p1 = 60. lb/in.2 V1 = 40. in.3 p2 = ? V2 = 10. in.3 Convert p1 to absolute pressure. p1 = 60. lb/in.2 + 14.7 lb/in.2 = 74.7 lb/in.2

  17. Charles’ Law NASA Volume of gas increases or decreases as the temperature increases or decreases, provided the amount of gas and pressure remain constant. Note: T1 and T2 refer to absolute temperature.

  18. Charles' Law Example An expandable container is filled with 28 in.3 of air and is sitting in ice water that is 32°F. The container is removed from the icy water and is heated to 200.°F. What is the resulting volume? V1 = 28in.3 V2 = ? T1 = 32°F T2 = 200.°F Convert T to absolute temperature. T1 = 32°F + 460.°F =492°R T2 = 200.°F + 460.°F =660°R

  19. Charles' Law Example An expandable container is filled with 28 in.3 of air and is sitting in ice water that is 32°F. The container is removed from the icy water and is heated to 200°F. What is the resulting volume? V1 = 28in.3 V2 = ? T1 = 32°F T2 = 200.°F Convert T to absolute temperature T1 = 32°F + 460.°F = 492°R T2 = 200°F + 460.°F = 660°R

  20. Gay-Lussac’sLaw Absolute pressure of a gas increases or decreases as the temperature increases or decreases, provided the amount of gas and the volume remain constant. Note: T1 and T2 refer to absolute temperature. p1 and p2 refer to absolute pressure.

  21. Gay-Lussac’s Law Example A 300. in.3 sealed air tank is sitting outside. In the morning the temperature inside the tank is 62°F, and the pressure gauge reads 120. lb/in.2. By afternoon the temperature inside the tank is expected to be close to 90.°F. What will the absolute pressure be at that point? V = 300. in.3 T1 = 62°F p1 = 120. lb/in.2 T2 = 90.°F p2 = ? Convert p to absolute pressure. p1= 120. lb/in.2 + 14.7 lb/in.2 = 134.7 lb/in.2 Convert T to absolute temperature. T1 = 62°F + 460.°F = 522°R T2 = 90.°F + 460.°F = 550.°R

  22. Gay-Lussac’s Law Example A 300 in.3 sealed air tank is sitting outside. In the morning the temperature inside the tank is 62°F, and the pressure gauge reads 120 lb/in2. By afternoon the temperature inside the tank is expected to be closer to 90°F. What will the absolute pressure be at that point? If the absolute pressure is 141.9 lb/in.2, what is the pressure reading at the gauge? 141.9 lb/in.2 – 14.7 lb/in.2 = 127.2 lb/in.2 = 130 lb/in.2

  23. Common Pneumatic System Components Transmission Lines Regulator Filter Drain Directional Control Valve Receiver Tank Cylinder Pressure Relief Valve Compressor National Fluid Power Association & Fluid Power Distributors Association

  24. Compressor Types Compair Reciprocating Piston Compressor

  25. Compressor Types Compair Rotary Screw Compressor

  26. Compressor Types Compair Rotary Vane

  27. Future Pneumatic Possibilities What possibilities may be on the horizon for pneumatic power? Could it be human transport? zapatopi.net

  28. Image Resources Compair. (2008). Compressed air explained: The three types of compressors. Retrieved March 5, 2008, from http://www.compair.com/About_Us/Compressed_Air Explained--03The_three_types_of_compressors.aspx Johnson, J.L. (2002). Introduction to fluid power. United States: Thomson Learning, Inc. Microsoft, Inc. (2008). Clip Art. Retrieved January 10, 2008, from http://office.microsoft.com/en-us/clipart/default.aspx National Aeronautics and Space Administration. (2008). Boyle’s law. Retrieved February 3, 2008, from http://www.grc.nasa.gov/ National Fluid Power Association. (2008). What is fluid power. Retrieved February 15, 2008, from http://www.nfpa.com/OurIndustry/OurInd_AboutFP WhatIsFluidPower.asp National Fluid Power Association & Fluid Power Distributors Association. (n.d.). Fluid power: The active partner in motion control technology. [Brochure]. Milwaukee, WI: Author. Zapato, L. (n.d.) The inteli-tube pneumatic transportation system. Retrieved February 29, 2008, from http://zapatopi.net/inteli-tube/

More Related