1 / 28

已知三角函数值求角

已知三角函数值求角. 已知三角函数值求角. 若 sinX= 求 X 。. sinX=. Y. 1. O. X. -1. 当 X [- , ] 时 , X=. 当 X [0 ,2 ] 时 , X=. arcsin(- x )=-arcsin x , x ∈[-1,1]. 若 sinX=0.7660 ,求 X 。 若 X=4, 求 X. 若 X=10, 求 X. Y=X. Y=sinX. Y. 1. --. O. X. -1. Y. Y=sinX. 1. -. -1.

Download Presentation

已知三角函数值求角

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 已知三角函数值求角 已知三角函数值求角

  2. 若sinX= 求X。

  3. sinX= Y 1 O X -1 当X [- , ]时, X= 当X [0 ,2 ]时, X=

  4. arcsin(- x )=-arcsin x , x∈[-1,1]

  5. 若sinX=0.7660 ,求X。 若X=4,求X.若X=10,求X. Y=X

  6. Y=sinX Y 1 -- O X -1

  7. Y Y=sinX 1 - -1 1 11 O X -1 -

  8. 函数y =sin x 的反函数叫做反正弦函数: 记作y =arcsin x ,x ∈[-1,1]

  9. y =sin x y =arcsin x x∈[-1,1]

  10. arcsin(- x )=-arcsin x , x∈[-1,1]

  11. 练习 (1)arcsin 是什么意思? (2)若sinX=- ,X [- , ],则X= (3)若sinX=0.7, X [- , ],则X=

  12. Y Y=cosX 1 π O X -1

  13. Y Y=cosX 1 π O X -1

  14. (2)函数y =cos x , x ∈[0, π ]的反函数叫做反余弦函数:记作y= arccosx,x ∈[-1,1]

  15. y =cos x ,x ∈[0, π ] y= arccosx,x ∈[-1,1]

  16. Y Y=cosX 1 π O X -1

  17. (1)已知X [0, ],cosX= 0.7660,求X。

  18. (2)已知X [0, ],cosX= --0.7660,求X。

  19. arccos(- x )= π -arccos x , x ∈[-1,1]

  20. (3)已知X [0,2 ],cosX =--0.7660,求X。

  21. 练习 (1)X [0,2 ],cosX= ,求X。 (2)已知X [0,2 ] cosX=cos61,求X。 (3)已知X [0,2 ], cosX=sin30,求X

  22. 1寻求等式成立的条件 sin(arcsin x )= x ________ cos(arccos x )= x________ arcsin(sin x )= x_________ arccos(cos x )= x_________

  23. 等式成立的条件 sin(arcsin x )= x ,x ∈[-1,1] cos(arccos x )= x ,x ∈[-1,1] arcsin(sin x )= x , x ∈[- ,] arccos(cos x )= x , x ∈[0, π ]

  24. 二.求值 1.sin(arcsin0.7660)=______ 2.cos[arccos(-0.3322)]=_____ 3.sin(arccos0.8)=_______ 4.cos(arcsin )=______

  25. arcsin(- x )=-arcsin x , x∈[-1,1] arccos(- x )= π -arccos x , x ∈[-1,1]

  26. y =sin x y =arcsin x Y 1 - X O -1

  27. y =cos x y= arccosx Y π 1 π X O -1

More Related