240 likes | 245 Views
Explore communication security, confidentiality, authentication, encryption methods, shared key establishment, public key crypto, RSA, DH, network security protocols, prime number generation, efficiency optimizations, crypto systems, certificates, and practical applications.
E N D
Network Security Review
Secure channel • Communication security • Confidentiality • Message • Traffic • Authentication • Integrity • How to achieve? • Establish shared key • Encrypt • MAC • Left out: non-repudiation, etc.
Shared Key Establishment • “Trusted third party” • Kerberos • Tickets • Public key methods • SSL • IPSEC • “Out-of-band”
Diffie-Hellman RSAN=pq; ed 1 (mod (N))Public:e,N;Private:d,N Encrypt M: CMemodN DecryptC:MCdmodN Sign M: SMdmod N VerifyS: Se M (modN) Public Key techniques p, g Alice Bob a b magamod p mbgbmod p ma mb mbamod p =gabmod p= mabmod p ? shared secret key! • Discrete log: • Given y,p,b • Find x: bxmod p = y • Factoring: • Given N=pq • Find p,q
Discrete log based schemes • DH (key establishment) • DSS/DSA (signatures) • El-Gamal (signatures, encryption) • Elliptic Curves Cryptography (ECC) • Why modulus (p) is so large? • Little-step/giant-step attack
Factoring based • RSA • Square Roots (=Factoring) • Rabin (Encryption, Signature) • Fiat-Shamir (ID scheme, Signature)
World mod N • How many objects?|Z*N|= (N); for all z Z*N, z (N) mod N=1 • If N=pq, then (N)= (p-1)(q-1)[If N=p, then (N)= p-1] • Blum integers: N=pq, pq3 (mod 4) • Thenx(p+1)/4mod p= y; y2x(p+1)/2x(p-1)/2 x±x mod p
Chinese Remainder Theorem (CRT) • Given y2 x mod p; z2 x mod q; N=pq;Find s: s2 x mod N • More generally:Given a,A, b,B;Find x: x a mod A, x b mod B • Let u, v be s.t. uA 1 mod B, vB 1 modAThen x=uAb+vBa[indeed: x mod A = uAb+vBa = vBa = a; x mod B = uAb+vBa = uAb = b] • How to find u,v?
Extended GCD • Euclid’s GCD algorithm(greatest common divisor):gcd(a,b) = gcd( b, a mod b) =…= gcd(a’,b’)=ca’=ib’+c, … , ax+by=c • If gcd(a,b)=1: ax 1 mod b
Summary(factoring-based) • RSA • Given p,q; Can compute (N), for N=pq; • With Extended gcd, can compute e, d 1/e mod (N); • gcd(e, (N)) must be 1 • Rabin • Using Blum integers can compute SQRT mod p,q • Using CRT can combine them to SQRT mod N
Prime number generation • Why? • How? • Exhaustive search • Too long • Miller-Rabin • Little Fermat’s Theorem (again) • Prime Number Theorem • #of primes between R and 2R is R/lnR • i.e. Prob[ random R is a prime ] 1/lnR
Efficiency for all • Exponentiation: Repetitive Squaring • bA mod N takes 1.5 lg A long multiplications • Cost of multiplication • quadratic in length • Optimization: mod N (mod p) + (mod q) +CRT • Watch out!
Attacks on factoring • (N), N => factoring (quadratic equation) • Trick: • obtain x, s.t. x0 mod p, x mod q0 • gcd(x, N)=p • SQRTmodN => Factoring • vy2mod N; zSQRTmodN(v) • If z ±y, then x y-z • Computing (mod p) + (mod q) + CRT • Random error mod p (or mod q) => factoring
Other Crypto Encryption Hashing MACs
Encryption • One time pad • Block cipher • DES • Feistel approach • AES/Rijndael • Modes of operation • EBC, CFB, CBC, etc. • Stream ciphers • RC-4 • Pseudo-random generators
Hashing • Hashing algorithms • MD-5 • SHA • Applications • Digital signatures • MAC
Systems Certificates SSL IPSEC Kerberos
Certificates • X-509 • CA’s • Trust infrastructure • Hierarchical • X.509 • Networks of Trust • PGP
SSL • TCP level secure channel • Establish Shared Secret • DH+Certificates [+signatures] • RSA+Certificates [+signatures] • Kerberos [TLS] • Do not confuse with Kerberos over SSL/TLS • Encrypt & MAC • Usually authenticates only server • Client authentication possible • Typical application: HTTPS
IPSEC • IP level secure channel • Similar tools to SSL • Some traffic confidentiality • Both ends authenticated • Tunneling • Typical application:VPN
Kerberos • Key-Distribution Centers approach • Trusted Third Party – another term • Authentication Server • Ticket Granting Servers • Tickets • Realms
Other topics • Firewalls • Non-repudiation • SET
Final: Tuesday May 10 9-11am See you there! Best of Luck!!!