1 / 24

Science Case for / Physics Goals of ALPS-II .

Science Case for / Physics Goals of ALPS-II . Strong case for p articles beyond the Standard Model. Standard Model (SM) of particle physics describes basic proper- ties of known matter and forces SM not a complete and fundamental theory :

annona
Download Presentation

Science Case for / Physics Goals of ALPS-II .

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Science Case for / Physics Goals of ALPS-II.

  2. Strong caseforparticlesbeyondthe Standard Model • Standard Model (SM) ofparticlephysicsdescribesbasic proper-tiesofknown matter andforces • SM not a completeand fundamental theory: • Nosatisfactoryexplanationforvaluesofitsmanyparameters • Noquantumgravity

  3. Strong caseforparticlesbeyondthe Standard Model • Standard Model (SM) ofparticlephysicsdescribesbasic proper-tiesofknown matter andforces • SM not a completeand fundamental theory: • Nosatisfactoryexplanationforvaluesofitsmanyparameters • Noquantumgravity • Noexplanationoftheoriginofdarkenergyanddark matter (wikipedia)

  4. Strong caseforparticlesbeyondthe Standard Model • Standard Model (SM) ofparticlephysicsdescribesbasic proper-tiesofknown matter andforces • SM not a completeand fundamental theory: • Nosatisfactoryexplanationforvaluesofitsmanyparameters • Noquantumgravity • Noexplanationoftheoriginofdarkenergyanddark matter • Leadingdark matter candidates: • NeutralinosandotherWeaklyInterac-ting Massive Particles (WIMPs) • AxionsandotherveryWeaklyInterac-ting Slim (=ultra-light) Particles (WISPs) (Kim,Carosi 10)

  5. Axionandaxion-likeparticles: Theory • Peccei-Quinnsolutionof strong CP puzzle: introduceaxionfield a(x) asdynamicalthetaparameter, enjoying a shiftsymmetry, brokenonlybyanomalouscouplingstogaugefields, • Effective theta parameter has zero expectation value: no strong CP violation • Elementary particle excitation of axion field: QCD axion(Weinberg 78; Wilczek 78) • For large decay constant : prime example of a WISP . . . (Kim 79; Shifman et al 80; Zhitnitsky80; Dine et al 81) • Axion-likeparticles(ALPs) : moreaxion-likefieldswithshiftsymmetryandanomalouscouplingstogaugebosons

  6. Axionandaxion-likeparticles: Theory

  7. Axionandaxion-likeparticles: Theory • In fieldtheoreticextensionsof SM, axionand ALP fieldsrealisedasphaseofcomplex SM singletscalarfieldswhosevacuumexpectationvalues break global anomalouschiral U(1) symmetries.(Peccei, Quinn 77) • Atenergiesmuchbelowthesymmetrybreaking,thelow-energyeffec-tivefieldtheoryisthatof (pseudo-)Nambu-Goldstone bosonswithdecayconstants • In models, in whichthe global PQ symmetriesare not imposedbyhand, but in whichtheyappearasautomaticconsequencesoflocalgaugein-variance, renormalisabilityandpatternofgaugesymmetrybreakdown: . (Georgi, Hall, Wise 81) • Big rangeofpossibilitiesdiscussedin literature:

  8. Axionandaxion-likeparticles: Theory • Particular strong motivationfortheexi-stenceoftheaxionand ALPs comesfromstringtheory • Low-energyeffectivefieldtheoryemer-ging fromstringtheorypredictsnaturalcandidatesforthe QCD axion, ofteneven an `axiverse´, containingmany additional ALPs (Witten 84; Conlon 06; Svrcek, Witten 06; Arvanitaki et al 09; Acharya et al 10; Cicoli,Goodsell,AR 12) • Numberof ALPs = numberofcyclesof extra-dimensional manifold • Big rangeofpossibilities, sinceitsvo-lumecantake a rangeofvalues:

  9. Axionandaxion-likeparticles: Theory

  10. Axionandaxion-likeparticles: Astrophysics • Strong boundson axions/ALPs comefromtheireffects on stellar evo-lutionandon thepropagationof SM particlesthroughastrophysicalen-vironments:(Raffelt 96) • Non-observation of an anomalousenergylossofHorizontal Branch (HB) stars due to ALP emission: • Absenseof a gamma-rayburst due toaxion/ALP-photon conversion in coincidencewithneutrinosfrom SN 1987A: (Brockway et al 96; Grifols et al 96) • Just behindtheboundaryofcurrentbounds, thereareintriguinghintssuggestingexistenceofaxionsand ALPs (Isern et al 08;12) • Evidencefor a non-standard energyloss in whitedwarfs, consistentwiththeexistenceof a subkeVmassaxionor ALP with

  11. Axionandaxion-likeparticles: Astrophysics • TeVphotonsfromdistantActiveGalactic Nuclei (AGN) shouldshowabsorptionfeatures due toe+e- pair productionattheExtragalactic Background Light (EBL)

  12. Axionandaxion-likeparticles: Astrophysics • TeVphotonsfromdistantActiveGalactic Nuclei (AGN) shouldshowabsorptionfeatures due toe+e- pair productionattheExtragalactic Background Light (EBL) • Not thecase: (e.g. Horns,Meyer) • Analysis of 50 spectra(HESS, MAGIC, Veritas): minimal EBL, absorptionexcludedbymorethan 4 sigma (Horns,Meyer 12)

  13. Axionandaxion-likeparticles: Astrophysics • TeVphotonsfromdistantActiveGalactic Nuclei (AGN) shouldshowabsorptionfeatures due toe+e- pair productionattheExtragalactic Background Light (EBL) • Not thecase: (e.g. Horns,Meyer) • Analysis of 50 spectra(HESS, MAGIC, Veritas): minimal EBL, absorptionexcludedbymorethan 4 sigma • Possibleexplanation in termsofphoton <-> ALP conversions in astrophysicalmagneticfields(Roncadelli et al 07; Simet et al 08; Sanchez-Conde et al 09; Horns et al 12)

  14. Axionandaxion-likeparticles: Astrophysics

  15. Axionandaxion-likeparticles: Dark matter • AxionsandotherbosonicWISPycolddark matter maybeprodu-ced non-thermally via vacuum-realignment in form ofclassical, spatiallycoherentoscillatingfields = coherentstateofextre-mely non-relativisticdark matter (Preskill et al 83; Abbott,Sikivie 83; Dine,Fischler 83; Cadamuro et al 12)

  16. Axionandaxion-likeparticles: Dark matter • AxionsandotherbosonicWISPycolddark matter maybeprodu-ced non-thermally via vacuum-realignment in form ofclassical, spatiallycoherentoscillatingfields = coherentstateofextre-mely non-relativisticdark matter • Axion (ALPs) cancontributesignifi-cantlytocolddark matter for . (a wider rangeofparameters) • Axionor ALP colddark matter may form rethermalising Bose Einstein Condensate (BEC) (Sikivie,Yang 09; Erken et al. 12; Sikivie 12) • Observational evidence for caustic rings of dark matter consistent with BEC, but not with WIMPy dark matter (Cadamuro et al. 12)

  17. Axionandaxion-likeparticles: Goals of ALPS-IIc • Chart thus-farunexploredparameterspace, surpassing, atlowmasses, eventhelimitsfromtheCERN Axion Solar Telescope (CAST) • Tackleregionswhicharefavoredbyastrophysicalhints, dark matter, andtheory

  18. Hidden photons: Theory • Most extensions of standard model based on supergravity or super-strings predict “hidden sector” of particles which are very weakly cou-pled to the “visible sector” standard model particles • Hidden-sectorAbelian gauge bosons (hidden photons) provide a win-dow to the hiddensectorsincetheycan mix kinetically with the visible sector hypercharge U(1) gauge boson, • Kinetic mixing generated at loop level via messenger exchange (Holdom 86; Dienes et al 97; Abel et al 08; Goodsell et al 09;12; Cicoli et al 11)

  19. Hidden photons: Dark radiation • FormeVscalemasses, photon <-> hiddenphotonoscillationsoccurresonantly after big bang nucleosynthesis, producing a hiddencosmicmicrowavebackground, leadingto an increaseofthecosmicenergydensity in invisible radiationatdecoupling (darkradiation), oftenquotedastheeffectivenumberofneutrinospecies(Jaeckel,Redondo,AR 08) • CMB observationsseemtofavour extra darkradiation: (Komatsu et al [WMAP] 10; Dunkley et al [AcatamaCosmologyTelescopeCollaboration] 10) • Requiredparameters:

  20. Hidden photons: Goals of ALPS-IIa/IIb • Conclusive test of hidden photon dark radiation hypothesis • Probe parameter region predicted in intermediate string scale scenarios • Tackle a fraction of hidden photon dark matter parameter space

  21. Summary • Strong physicscasefor WISPs fromtheory: • Solution of strong CP problemgivesparticularly strong motivationforexistenceof QCD axion • In many UV completionsof SM with a QCD axion, thereoccur also ALPs • Hidden sectorsareoftenexploited in supersymmetricextensionsofthe SM. In thesesectors, hiddenphotonsareverywellmotivated WISP candidatesproviding a windowtothehiddensector. • ALPs andhiddenphotonscansolvepuzzles in astrophysicsand cos-mology: • Anomalousenergylossofwhitedwarfs • AnomaloustransparencyoftheuniverseforTeVphotons • Extra darkradiation • WISPydark matter • ALPS-II cantacklecorrespondingregions in WISPyparameterspace!

  22. Backup • Study on ALP explanationofTeVtransparency in progress(Horns,Meyer): ALPS-II coversfiducialregion

  23. Backup • Projectedaxion/ALP sensitivitiesofotherexperiments: (Hewett et al 12)

  24. Backup • Projectedhiddenphotonsensitivitiesofotherexperiments: (Hewett et al 12)

More Related