1 / 40

Module-3 : Transmission

Module-3 : Transmission. Marc Moonen Dept. E.E./ESAT, K.U.Leuven marc.moonen@esat.kuleuven.ac.be www.esat.kuleuven.ac.be/sista/~moonen/. Module-3 : Transmission. Module 1: Introduction to Telecommunications & Networks Module 2: Telecommunication Networks and Technologies

Download Presentation

Module-3 : Transmission

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Module-3 : Transmission Marc Moonen Dept. E.E./ESAT, K.U.Leuven marc.moonen@esat.kuleuven.ac.be www.esat.kuleuven.ac.be/sista/~moonen/ Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven/ESAT-SISTA

  2. Module-3 : Transmission • Module 1: Introduction to Telecommunications & Networks • Module 2: Telecommunication Networks and Technologies • Module 3: Transmission Techniques • Module 4: Transmission of Sound, Video & Data Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  3. Aims/Scope • Basic Digital Communication principles modulation/demodulation, detection (for the regraders/sidegraders) • New/Advanced Topics CDMA, multicarrier modulation, smart antennas (for the regraders/upgraders) • Mostly `bird’s-eye view’ skip mathematical details (if possible) selection of topics (non-exhaustive) Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  4. New/Advanced Topics? • Analog & 1G Digital Communication Systems: communication over fairly `simple’ (e.g. AWGN) channels emphasis on modulation/demodulation/timing/etc... circuitry • Present Day/Future Communication Systems = box full of mathematics & signal processing for communication over highly bandwidth constrained channels, fading channels, etc... Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  5. New/Advanced Topics ? • Example: Telephone Line Modems voice-band modems : up to 56kbits/sec in 0..4kHz band ADSL modems : up to 8Mbits/sec in 30kHz…1MHz band VDSL modems : up to 52Mbits/sec in …10MHz band xDSL communication impairments: channel attenuation/distortion, echo, cross-talk, RFI,... see Lecture-7/8 x 1000 Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  6. New/Advanced Topics? x 40 • Example : Wireless Communications Typical spectral efficiency : ...1 bits/sec/Hz MIMO-transmission (`smart antennas’ & co): example : V-BLAST (Lucent Techn. 1998) …40bits/sec/Hz exploits a `rich scattering environment’ see Lecture-2, Lecture-10 Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  7. New/Advanced Topics? Enabling Technology is • Signal Processing 1G-SP: analog filters 2G-SP: digital filters, FFT’s, etc. 3G-SP: full of mathematics, linear algebra, statistics, etc... • VLSI • etc... Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  8. Overview (I) • 20/4/2000 Lecture-1 : General Intro Lecture-2 : Limits of Communication • 27/4/2000 Lecture-3 : Transmitter Design/Modulation Lecture-4 : Receiver Design/Detection • 4/5/2000 Lecture-5 : Channel Equalization Lecture-6 : Adaptive Equalization Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  9. Overview (II) • 11/5/2000 Lecture-7 : Multicarrier Modulation (I) Lecture-8 : Multicarrier Modulation (II) • 18/5/2000 Lecture-9 : Multiple Access/CDMA Lecture-10: Smart Antennas/MIMO-transmission Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  10. Assignments & Exam • Assignments Pen & paper exercises Self-study material • Exam 25/5/2000 • WWW-site : telecom.europace.be Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  11. Prerequisites • Module-1 - M. Goossens : Yes (?) • Module-2 - P. DeMeester : No • Digital Communications Background : No (?) • Mathematics Background : Yes statistics, linear algebra -> see assignments • Signal Processing Background : Yes digital filters, transforms, stochastic processes -> see assignments Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  12. Literature • E.A. Lee & D.G. Messerschmitt `Digital Communication’(Kluwer AP 1994) • J.G. Proakis `Digital Communications’(McGraw Hill 1989) • B. Sklar `Digital Communications’(Prentice-Hall 1988) • S. Haykin `Communication Systems’(Wiley 1994) • H. Meyr, M. Moeneclaey & S. Fechte `Digital Communication Receivers’(Wiley 1998) • etc... Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  13. Acknowledgement Many of the slides/text/figures/graphs are adopted from the handouts of Module T2 `Digital Communication Principles’ M.Engels, M. Moeneclaey, G. Van Der Plas 1998 Postgraduate Course on Telecommunications Special thanks to Prof. Marc Moeneclaey Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  14. Lecture-1 : General Introduction • Analog vs. Digital Communication • Digital Communication Systems Description Transmitter Channel Receiver • Preview Lectures 2->10 Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  15. Analog vs. Digital Communication (I) Analog Communication: • Transmission of signals that are inherently analog (speech, video, etc..) • Baseband or passband (AM, FM, ..) • Bandwidth = signal bandwidth Example: speech signal 0..4kHz -> BW=4kHz • Received signal subject to channel impairments, transmitter/receiver impairments, etc.. Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  16. Analog vs. Digital Communication (II) Digital Communication: • Transmission of signals that are inherently digital (`data’) or analog (speech, video, etc..) • Analog signals are converted into digital signals by sampling & quantization (A-to-D conversion) Example : - speech 0…4kHz - sampled at 8kHz (cfr. Nyquist criterion), - each sample converted into 8 bits number-> 64kbits/sec =PCM (pulse code modulation) Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  17. Analog vs. Digital Communication (III) Digital Communication • What? A principle feature of a digital communication system is that during a finite interval of time, it sends a waveform from a finite set of possible waveforms. The objective of the receiver is not to reproduce the transmitted waveform, but (only) to determine which of the possible waveforms has been sent. Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  18. Analog vs. Digital Communication (IV) x 3 Digital Communication Key Features: • source coding/compression: Example: speech signal 64kbits/sec-> 11kbits/sec…4kbits/sec (through `signal modeling’) • channel coding/error correction see also Module-4 • increased spectral efficiency through coding, signal processing, etc. Example: v.34 voice-band modem 33.6 kbits/sec in 4kHz voice-band (=8bits/sec/Hz) Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  19. Digital Communication System (I) • Block Diagram • Digital Information is digital signal (data) or `sampled+quantized’ analog signal (speech,..) continuous-time channel digital information digital information s(t) r(t) Tx Rx channel Transmitter with D-to-A Receiver with A-to-D Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  20. Digital Communication System (II) Transmitter • converts bit sequence into waveform s(t) (=`modulation’) • bits are grouped into `symbols’ (n bits per symbol, hence M=2^n different symbols) (=`symbol alphabet’, `constellation’) • each symbol corresponds to a different waveform segment • symbol rate = # transmitted symbols/sec = Rs (`Baud rate’, after Baudot, French telegraph engineer) Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  21. Digital Communication System (III) Channel • physical medium : twisted pair, coax, optical fiber, radio • channel impairments : noise, attenuation/distortion, cross-talk, interference, etc… Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  22. Digital Communication System (IV) Receiver • Converts received signal r(t) into bit sequence (=`demodulation/detection’) • Receiver performance : Bit Error Probability (BEP) or Bit Error Rate (BER) BER = (#bit errors) / (#transmitted bits) example : voice : BER <1E-3 data : BER <1E-10 Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  23. Transmitter (I) • Transmitted bits are grouped into symbols (n bits per symbol, hence M=2^n symbols) • Transmitted symbols are • Transmitted signal is where p(t) is transmit pulse, and is symbol energy ( and p(t) are energy-normalized), Ts is symbol period Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  24. Transmitter (II) • Transmitted signal is • Linear modulation (e.g. PAM, QAM, PSK) all signal segments are proportional to the same pulse p(t) see Lecture-3 for pulse design • Non-linear modulation (e.g. FSK) emphasis on this see assignments Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  25. Transmitter (III) • Constellations for linear modulation (=`symbol alphabet’) PAM PSK QAM pulse amplitude modulation phase-shift keying quadrature amplitude modulation 4-PAM (2bits) 8-PSK (3bits) 16-QAM (4bits) ps: complex constellations for passband transmission (see Lecture-3) I I I R R R Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  26. Channel (I) Channel impairments: • attenuation/distortion (linear/non-linear) • noise (linear/non-linear) • cross-talk (1 or many) • echo (e.g. hybrid impedance mismatch) • RFI (e.g. amateur radio) Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  27. s(t) Ho + channel n(t) Channel (II) • Mostly simple linear channel models • Example: AWGN-channel (additive white Gaussian noise channel) n(t) is zero-mean Gaussian process with power spectrum No/2 for |f|<B (B=bandwidth) (example: satellite communication channel) r(t)=Ho.s(t)+n(t) Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  28. R(f)=H(f).S(f)+N(f) H(f) s(t) + channel Channel (III) • PS: Gaussian noise model justified through central limit theorem (ex: 1 cross-talker is non-Gaussian, 30 cross-talkers approx. Gaussian) • PS: `White’ actually means `white within useful bandwidth’ i.o. truly `white’ (->infinite power hence ill-defined) • Example: frequency-selective channel frequency-dependent channel attenuation/phase distortion (example: twisted pair, coax) n(t) Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  29. Receiver (I) • Receiver retrieves transmitted symbols from received signal r(t) • This leads to an optimization problem Example: minimum distance receiver where p’(t) is transmit pulse p(t), modified by channel Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  30. 1/Ts Receiver (II) • For AWGN channels (<->frequency-selective channels), a receiver may consist of : - (a front-end `(whitened) matched filter’, WMF) - a symbol-rate sampler (i.e. 1 sample/symbol interval) - a (memory-less) decision device that decides on the nearest symbol in the symbol alphabet • Timing instant for symbol-rate sampling is crucial, hence synchronization scheme needed ! r(t) WMF see lecture 3-4 Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  31. Receiver (III) • For frequency-selective channels, the receiver may consist of - WMF + symbol-rate sampling front-end, or - anti-alias filtering + Nyquist-rate sampling front-end followed by more complicated processing: - Maximum-likelihood sequence estimation (e.g. Viterbi algorithms) - Equalization + decision device - … • See Lecture 4-5 Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  32. Preview Lectures 2->10 Lecture-2 : Limits of Communication • Given a communication channel, an amount of transmit power and transmit bandwidth, what is the maximum achievable transmission bit-rate (bits/sec), for which the bit-error-rate is sufficiently (infinitely) small ? • Shannon theory (1948) • Recent topic: MIMO-transmission (e.g. V-BLAST, cfr. supra) Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  33. Preview Lectures 2->10 Lecture-3 : Transmitter Design/Modulation • Baseband vs passband modulation • Constellations for linear modulation • Transmit pulse p(t) design: `(root) raised cosine pulses’ • Simple receiver structures, eye diagrams, etc. Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  34. Preview Lectures 2->10 Lecture-4 : Receiver Design/Detection • Inter-symbol interference • Receiver front-ends : - (whitened) matched filtering + symbol-rate sampling - anti-alias filtering + Nyquist-rate sampling • Optimum detection - MAP/Maximum Likelihood-detection - MLSE/Viterbi algorithm Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  35. Preview Lectures 2->10 Lecture-5 : Receiver Design/Equalization • Equalization vs. inter-symbol interference • Equalizer structures : - Linear equalizers - Decision-feedback equalizers - Fractionally spaced equalizers • Design criteria - Zero-forcing equalization - Minimum-mean-squared-error (MMSE) equalization Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  36. Preview Lectures 2->10 Lecture-6 : Adaptive Equalization • Equalization when channel is unknown and/or time-varying • Least-mean squares algorithm (Widrow 1965) - MMSE and stochastic gradient • Recursive Least Squares algorithms - Least squares criterion - Introduction to Fast RLS algorithms Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  37. Preview Lectures 2->10 Lecture-7/8 : Multicarrier Modulation • Applications - ADSL modems (VDSL modems) • Combination of frequency-shift keying (FSK) and quadrature amplitude modulation (QAM) • Multicarrier modulation/demodulation based on fast Fourier transforms IFFT/FFT • Alleviate (?) equalization problem through usage of cyclic prefix - Time vs. frequency domain equalization Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  38. Preview Lectures 2->10 Lecture-9 : Multiple Access/CDMA • Multiple Access: - TDMA/FDMA (e.g. GSM) - CDMA (e.g. IS-95, 3G mobile comms) • CDMA code sequences • CDMA receivers - Single-user detection - Multi-user detection Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  39. Preview Lectures 2->10 Lecture-10 : Smart Antennas/MIMO transmission • Antenna array receivers - Beamforming - Channel modeling • SDMA : `spatial dvision multiple access’ allows different users to use the same frequencies/codes at the same time. Signal separation performed based on spatial properties. • MIMO-transmission (e.g. V-BLAST) Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

  40. Preview Lectures 2->10 Lecture-10 (reserve) : Echo Cancellation • Echo generation in full-duplex modems - Line echo - Acoustic echo • Echo cancellation • Adaptive echo cancellation Module-3 Transmission Marc Moonen Lecture-1 Introduction K.U.Leuven-ESAT/SISTA

More Related