1 / 32

A Distributed Coordination Framework for Wireless Sensor and Actor Networks

This paper discusses a distributed coordination framework for Wireless Sensor and Actor Networks (WSANs) to establish efficient data paths and meet real-time and energy requirements.

Download Presentation

A Distributed Coordination Framework for Wireless Sensor and Actor Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ADistributedCoordinationFrameworkforWirelessSensorandActorNetworksADistributedCoordinationFrameworkforWirelessSensorandActorNetworks TommasoMelodia,DarioPompili,VehbiC.Gungor,IanF.Akyildiz (MobiHoc2005) PresentedbyTaeheeKim . Thisisbasedonapresentationfileof‘TommasoMelodia’atMobihoc2005.

  2. WirelessSensorandActorNetworks(WSANs) • Sensors • Passiveelementssensingtheenvironment • Limitedenergy,processing,andcommunicationcapabilities • Actors • Activeelementsactingontheenvironment • Higherprocessingandcommunicationcapabilities • Lessconstrainedenergyresources(longerbatterylifeorconstantpowersource) 1/26

  3. WSANApplication • DistributedRobotics&SensorNetwork: • (Mobile)robotsdispersedthroughoutasensornetwork • EnvironmentalApplications: • Detectingandextinguishingforesestfire • BattlefieldApplications: • Sensorsdetectminesorexplosivesubstances • Actorsannihilatethemorfunctionastanks • Microclimatecontrolinbuildings: • Incaseofveryhighorlowtemperaturevalues,triggertheaudioalarmactorsinthatarea 2/26

  4. WSANsvs.WirelessSensorNetworks • Real-TimeRequirementsforTimelyActions • Rapidlyrespondtosensorinput • Toperformrightactions,sensordatamustbevalidatthetimeofacting • HeterogeneousNodeDeployment • SensorDenselydeployed • ActorLooselydeployed • CoordinationRequirements • Sensor-ActorCoordination • Actor-ActorCoordination 3/26

  5. WSANCommunicationArchitecture SensorsActors • Nointerventionfromthesinkisnecessary • Localizedinformationexchange • Lowlatency • Distributedsensor-actorandactor-actorcoordinationrequired 4/26

  6. WSANsvs.WirelessSensorNetworks • Needforadistributedcoordinationmechanism: • Sensor-ActorCoordination • Establishdatapathsbetweensensorsandactors • Meetenergyefficiencyandreal-timerequirements • Actor-ActorCoordination • Decision:doesanactionneedtobeperformed? • Whatistheoptimalstrategyfortheactorstodividetheworkload? 5/26

  7. Sensor-ActorCoordination

  8. Sensor-ActorCoordination • Objectives: • Establishdatapathsbetweensensorsandactors • Meetenergyefficiencyandreal-timerequirements • Question: • Towhichactordoeseachsensorsenditsdata? • Whatistheoptimaltreefromsensorstoactors? • OurSolution: EventDrivenClusteringwithMultipleActors 6/26

  9. Reliability(1/2) • Definition1. TheLATENCYBOUNDBisthemaximumallowedtimebetweensamplingofthephysicalfeaturesoftheeventandtheinstantwhentheactorreceivesadatapacketdescribingtheseeventfeatures • Definition2. AdatapacketisEXPIRED(UNRELIABLE),ifitdoesnotmeetthelatencyboundB • Definition3. AdatapacketisUNEXPIRED(RELIABLE),ififisreceivedwithinthelatencyboundB 7/26

  10. Reliability(2/2) • Definition4. TheEVENTRELIABILITYristheratioofreliabledatapacketsoverallpacketsreceivedinadecisioninterval • Definition5. TheEVENTRELIABLITYTHRESHOLDrthistheminimumeventreliabilityrequiredbytheapplication • OBJECTIVE: Complywiththeeventreliabilitythreshold(r>rth)withminimumenergyexpenditure! 8/26

  11. Event-DrivenClusteringwithMultipleActors • Objective: • Findtheoptimalstrategyforevent-drivenclustering (Towhichactorsisdatasent?Whichpathsareused?) • SolutionApproach: • Optimalsolutionobtainedbymeansofmathematicalprogramming • IntegerLinearProgrammingformulation • NP-Complete • NotScalable(<100nodes),centralizedsolution 9/26

  12. DistributedProtocol(1/3) • Objectivesofthedistributedprotocol: • Establishsensor-actordatapaths • Clusterthesensorsintheeventarea • Findtheoptimalworkingpointofthenetwork • r> rth(reliabilityoverthethreshold) • Minimumenergyconsumption • BasedonGeographicalRouting • Decisionstakenbasedoffeedbacksfromactors • Actorcalculatedreliabilityrandbroadcastsitsvaluetothesensors • Sensorsswitchamongstart-up,speed-up,aggregationstate 10/26

  13. DistributedProtocol(2/3) • Sensorsprobabilisticallyswitchamongthreedifferentstatesaccordingtofeedbackfromtheactors: • Start-upState: • Whentheeventoccurs,allsensorsswitchinthestart-upstateandestablishdatapathstotheactorsaccordingtotwo-hoprule • Quicklyestablishadatapathfromeachsourcetooneactor • Compromisebetweenenergyconsumptionandlatency • Actorcalculatedreliabilityrandbroadcastsitsvaluetothesensors • Speed-upState:(Ifr<rth) • Reducethenumberofhopsofsensor-actorpathssoastoreducetheend-to-enddelay(lowerdelay,higherenergyconsumption) • Obtainedbysendingpacketsto“far”neighbors(closertothedestinationactor) 12/26

  14. DistributedProtocol(3/3) • AggregationState:(Ifr<rth) • Reducetheoverallenergyconsumptionwhencompliantwitheventreliability(lowerenergyconsumption,higherdelay) • Sendpacketstocloserneighbors(highernumberofhops) • Theprobabilityofchangingstatemydependonthelack/excessofreliability 13/26

  15. Example:pathestablishment Nodesestablishpathsaccordingto thetwo-hoprule(start-upstate) Eventoccurs! Idlestate Start-upstate 14/26

  16. Example:lowreliability Somesensorsswitchtothespeed-up stateandselectasnexthoptheclosestnodetotheactor->reducelatency Theactoradvertiseslowreliability (r<rth) idlestate start-upstate speed-upstate 15/26

  17. Example:highreliability Somesensorsswitchtotheaggregation stateandselectasnexthoptheclosestnodealreadyinthenode->reduceenergyconsumption Theactoradvertiseshighreliability (r>rth) idlestate start-upstate speed-upstate aggregationstate 16/26

  18. Actor-ActorCoordination

  19. Actor-ActorCoordination • Objective: • Selectthebestactor(s)intermsofactioncompletiontimeandenergyconsumptiontoperformtheaction • Challenges: • Whichactor(s)shouldexecutewhichaction(s)? • Howshouldthemulti-actortaskallocationbedone? 17/26

  20. Actor-ActorCoordinationModel • Definitions: • OverlappingArea • Anareathatcanbeacteduponbymultipleactors • Non-OverlappingArea • Anareathatcanbeacteduponbyonlyoneactor • ActionCompletionTimeBound • Themaximumallowedtimefromtheinstantwhentheeventissensedtotheinstantwhentheactioniscompleted • PowerLevels • Discretelevelsofpowertoperformtheaction.Ahigherpowerlevelcorrespondstoaloweractioncompletiontime 18/26

  21. Actor-ActorCoordinationProblem • ForanOverlappingArea,actor-actorcoordinationproblem: • Selectingasubsetofactors • Adjustingactionpowerlevels • Maximizetheresidualenergyandcompletetheactionwithintheactioncompletionbound • ForaNon-OverlappingArea,actor-actorcoordinationproblem: • Adjustactionpowerlevels • Maximizetheresidualenergy 19/26

  22. Actor-ActorCoordination • OptimalSolution: • Actor-actorcoordinationproblemformulatedasaResidualEnergyMaximizationProblemusingMixedInterNon-LinearProgramming(MINLP) • NP-CompleteProblem • DistributedSolution: • Real-TimeLocalizedAuction-BasedMechanism • Definitions • Seller:Actorreceivingtheeventfeatures • Auctioneer:Actorinchargeofconductingtheauction • Buyer:Actorabletoactonaparticularoverlappingarea /26

  23. Real-TimeLocalizedAuction-BasedMechanism • FortheOverlappingareas: • TheSellerselectsoneauctioneerforeachoverlappingarea,i.e., theclosestactortothecenteroftheoverlappingarea->Energyspentforauctionandauctiontimereduced! • TheSellerinformseachauctioneeroftheauctionareaandoftheactiontimebound • TheAuctioneerdeterminesthewinnersoftheauctionbasedonthebidsreceivedfromthebuyers.Thebidsconsistsofavailableenergy,powerlevelandactioncompletiontime • TheAuctioneerfindsthewinnersbycalculatingtheoptimalsolutionoftheResidualEnergyMaximizationProblem • FortheNon-Overlappingareas: • Theactorisdirectlyassignedtheactiontask 20/26

  24. PerformanceResult

  25. Sensor-ActorCoordination–Energy(1/2) 21/26

  26. Sensor-ActorCoordination–Energy(2/2) 22/26

  27. Sensor-ActorCoordination:Delays 23/26

  28. Sensor-ActorCoordination:PathLength 24/26

  29. Actor-ActorCoordination 25/26

  30. ConclusionsandFutureWork • FirstpapertodealwithintegratednetworksofSensorsandActors • UnifiedframeworkforcommunicationandcoordinationproblemsinWSANs • SolutionsforSensor-ActorcoordinationandActor-Actorcoordination • Focusonreal-timeandenergyconsumption • Futureworkwillincorporatemobilityofactorsandtuningofthenetworkdynamics 26/26

  31. EvolutionofStatesforaSensor

More Related