1 / 24

课程名称:电磁场与电磁波 授课学院:国际学院 学生班级: 07 级,电信工程及管理专业

课程名称:电磁场与电磁波 授课学院:国际学院 学生班级: 07 级,电信工程及管理专业. 教师姓名:乔耀军 所在学院:信息与通信工程学院. 课程简介. 主要内容: 课程首先通过基本的实验定律结合矢量分析的方法,建立静电场、静磁场和稳恒电流电场的基本方程;然后讲述更普遍的时变电磁场,麦克斯韦在总结基本实验定律的基础上,结合自己提出的位移电流假说,给出了麦克斯韦方程组。麦克斯韦方程组是解决所有电磁问题的理论依据。课程的最后利用麦克斯韦方程组分析电磁波的产生和传播的问题,对应后续课程的光波导、传输线、天线等课程。

Download Presentation

课程名称:电磁场与电磁波 授课学院:国际学院 学生班级: 07 级,电信工程及管理专业

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 课程名称:电磁场与电磁波授课学院:国际学院学生班级:07级,电信工程及管理专业课程名称:电磁场与电磁波授课学院:国际学院学生班级:07级,电信工程及管理专业 教师姓名:乔耀军 所在学院:信息与通信工程学院

  2. 课程简介 • 主要内容:课程首先通过基本的实验定律结合矢量分析的方法,建立静电场、静磁场和稳恒电流电场的基本方程;然后讲述更普遍的时变电磁场,麦克斯韦在总结基本实验定律的基础上,结合自己提出的位移电流假说,给出了麦克斯韦方程组。麦克斯韦方程组是解决所有电磁问题的理论依据。课程的最后利用麦克斯韦方程组分析电磁波的产生和传播的问题,对应后续课程的光波导、传输线、天线等课程。 • 重要性:因为麦克斯韦方程组是解决所有电磁问题的理论基础,而通信中发射机和接收机之间要靠电磁波传输,所以这门课程对北邮的学生十分重要。 • 学习方法:同时这又是很难学的一门课,学生原来学习的知识都是基于“路”的课程,利用标量和微分方程可以求解;本门课要建立“场”的概念,需要利用矢量分析的方法和求解偏微分方程,需要学生有较好的数学基础。

  3. Guass’s lawandDivergence Equations of Electrostatics Yaojun Qiao April 1,2009

  4. The main contents ___ ___ ___ ___ ('v') ('v') ('v') ('v') (( )) (( )) (( )) (( )) -/-"--"----/-"--"----/-"--"----/-"--"-- Review Coulomb’s law, superpositionprinciple,and Electric field intensity Gauss’s law and its application Divergence equation and its application Summary

  5. 1. ☆Coulomb’s Law C. A. Coulomb, France source Observation point e0refers to the Dielectric Constant in free space erefers tothe Dielectric Constant of medium

  6. 1. ☆Superposition principle(叠加原理) • For scattered charges • For chargers distribution

  7. 1. ☆ Electric Field Intensity(电场强度) Unit: Electric Field Intensity is actually the electro-static force per unit charge. Why q test0 ? Electric field intensity for point charge: Electric field intensity satisfies superposition principle ___ ___ ___ ___ ('v') ('v') ('v') ('v') (( )) (( )) (( )) (( )) -/-"--"----/-"--"----/-"--"----/-"--"--

  8. Tangent S  line 1. ☆ Electric Field lines(电力线) Definition of Electric field lines: • From positive charge, end at negative charge; • The tangent direction of electric field line is the direction of electric field intensity; • The density of electric field line is the magnitude of electric field intensity; • From high potential to lower potential. M. Faraday ,England

  9. How to studyElectric Field Intensity Helmholtz Theorem: ——亥姆霍兹公理 In limited region, any vector field can be uniquely determined by its divergence,curl and the boundary conditions. Boundary conditions

  10. S 2. ☆ Electrostatic Gauss’s Law(高斯定理) Electric flux(电通量)

  11. q内 S 2. ☆ Electrostatic Gauss’s Law(高斯定理) J. C. F. Gauss, Germany Gauss’s law: The net electric flux emanating from a closed surface is numerically equals to the sum of charge inside the closed surface over

  12. + Coulomb’s law Superposition principle θ S r q 2. ☆ Electrostatic Gauss’s Law(高斯定理) How to get Gauss’s law? Guass’s law

  13. 2. ☆ Electrostatic Gauss’s Law P  S P P   S S • Discuss Gauss’s law: • The charge is the source of electrostatics; • The line of electrostatic is from positive charge, end at negative charge, continually at W/O charge point; • Although E are generated by all charge in space, electric flux only relates with the charges inside the enclosed surface.

  14. 2. ☆ Solve the electrostatics problem with Guass’s law It is significantly useful for ——solution to E Intensity in symmetrical cases. Symmetrical system: • Spherical symmetrical • Cylindrical symmetrical • Surface symmetrical

  15. 2. ☆ Solve the electrostatics problem with Guass’s law The tip of E-Gauss’s Law: (1) Find a closed surface (2) The quantity of on the surface is constant. When the charge distribution is symmetrical, ——Try E-Gauss’s Law! (^_^) Example --->>> in next page

  16. S 2 r S 1 S 3 Example : Infinite Line Charges Solution via Gauss’s Law • Axial Symmetry——construct a cylindrical surface, in unit height, with line charges as the axis, and r as the radius. Since the E field has only radial component,

  17. 3. ☆ Divergence equation (散度方程) Gauss’s Law Integral form Please note: r here refers to volume density of free charge.

  18. z z y y x x Guass’s law,macroscopic Surface for Integration Surface for Integration E

  19. z Surface for Integration E y x Divergence equation, microscopic Argh!! I am shrinking!!!

  20. 3. ☆ Solve the charge distribution with divergence eq. • E-intensity in space is known as follows. Please determine the charge distribution. • Analysis: • Due to spherical symmetry, E has only radial component; • Apply div equ in differential form; (^_^) --------------->>> in next page

  21. 4. ☆ Summary Guass‘ law Div Equ: Integral form Differential form

  22. Review Guass’s Law and the Div Equation • Physical Meaning: • describing the scattering character of static E field • For integral equation: • E-flux through any closed surface S = charges within S • Flux Source of Static E Field is Charges. • For differential equation: • Electrostatics Div = Volume density of Q at that point • Div Source of Static E Field is Volume density of Charges. Integral form Differential form

  23. Kernel of E-Gauss’s Law: (1) Find a closed surface (2) The quantity of on the surface is constant. Please note this tip. When the charge distribution is symmetrical, ——Try E-Gauss’s Law!

  24. Homework • Exercises: 3.4,3.8, • Problem:3.23(optional)

More Related