1 / 35

Matlab

Matlab. Multilayer Perceptron. Multilayer: XOR. Input patterns. Multilayer : XOR. Target. Multilayer : XOR. New Network. Multilayer : XOR. View Network. Multilayer : XOR. Train. Multilayer : XOR. Performance. Multilayer : XOR. Regression. Multilayer : XOR. Test Data.

Download Presentation

Matlab

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Matlab Multilayer Perceptron

  2. Multilayer: XOR • Input patterns

  3. Multilayer : XOR • Target

  4. Multilayer : XOR • New Network

  5. Multilayer : XOR • View Network

  6. Multilayer : XOR • Train

  7. Multilayer : XOR • Performance

  8. Multilayer : XOR • Regression

  9. Multilayer : XOR • Test Data

  10. Multilayer : XOR • Simulate

  11. Multilayer : XOR • Simulate

  12. Classification: Character recognition • APPCR1 • PRPROB

  13. Classification: Character recognition • Input patterns

  14. Classification: Character recognition • Input patterns • alphabet = [letterA,letterB,letterC,letterD,letterE,letterF,letterG,letterH,letterI,letterJ,letterK,letterL,letterM,letterN,letterO,letterP,letterQ,letterR,letterS,letterT,letterU,letterV,letterW,letterX,letterY,letterZ];

  15. Classification: Character recognition • Input patterns: suffer from noise • alpha_noise= alphabet + randn(35,26)*0.5;

  16. Classification: Character recognition • Input patterns: All • p=[alphabet alpha_noise];

  17. Classification: Character recognition • Target • T= [eye(26) eye(26)];

  18. Classification: Character recognition • New Network

  19. Classification: Character recognition • View Network

  20. Classification: Character recognition • Train

  21. Classification: Character recognition • Performance

  22. Classification: Character recognition • Regression

  23. Classification: Character recognition • Test Data • test_p = alphabet + randn(35,26)*0.25;

  24. Classification: Character recognition • Simulate • export

  25. Classification: Character recognition • Simulate • multilayer_char_test_out_2= compet(multilayer_char_test_out);

  26. Classification: Character recognition • Simulate • error= sum(sum(abs(multilayer_char_test_out_2-eye(26))))/2; 25!!!!!!!!!!!

  27. Function Approimation: Sin • Input patterns: • p=[-1:0.05:1]; • p=2*pi*p;

  28. Function Approimation: Sin • Target • t=sin(p)+0.1*randn(size(p));

  29. Function Approimation: Sin • plot(p, t, 'DisplayName', 'p', 'XDataSource', 'p', 'YDataSource', 't'); figure(gcf)

  30. Function Approimation: Sin • New Network

  31. Function Approimation: Sin • View Network

  32. Function Approximation: Sin • Train

  33. Function Approximation: Sin • Performance

  34. Function Approximation: Sin • Regression

  35. Function Approximation: Sin • Simulate • testp=[pi/6, pi/4, pi/3, pi/2];

More Related