370 likes | 738 Views
Matlab. Multilayer Perceptron. Multilayer: XOR. Input patterns. Multilayer : XOR. Target. Multilayer : XOR. New Network. Multilayer : XOR. View Network. Multilayer : XOR. Train. Multilayer : XOR. Performance. Multilayer : XOR. Regression. Multilayer : XOR. Test Data.
E N D
Matlab Multilayer Perceptron
Multilayer: XOR • Input patterns
Multilayer : XOR • Target
Multilayer : XOR • New Network
Multilayer : XOR • View Network
Multilayer : XOR • Train
Multilayer : XOR • Performance
Multilayer : XOR • Regression
Multilayer : XOR • Test Data
Multilayer : XOR • Simulate
Multilayer : XOR • Simulate
Classification: Character recognition • APPCR1 • PRPROB
Classification: Character recognition • Input patterns
Classification: Character recognition • Input patterns • alphabet = [letterA,letterB,letterC,letterD,letterE,letterF,letterG,letterH,letterI,letterJ,letterK,letterL,letterM,letterN,letterO,letterP,letterQ,letterR,letterS,letterT,letterU,letterV,letterW,letterX,letterY,letterZ];
Classification: Character recognition • Input patterns: suffer from noise • alpha_noise= alphabet + randn(35,26)*0.5;
Classification: Character recognition • Input patterns: All • p=[alphabet alpha_noise];
Classification: Character recognition • Target • T= [eye(26) eye(26)];
Classification: Character recognition • New Network
Classification: Character recognition • View Network
Classification: Character recognition • Performance
Classification: Character recognition • Regression
Classification: Character recognition • Test Data • test_p = alphabet + randn(35,26)*0.25;
Classification: Character recognition • Simulate • export
Classification: Character recognition • Simulate • multilayer_char_test_out_2= compet(multilayer_char_test_out);
Classification: Character recognition • Simulate • error= sum(sum(abs(multilayer_char_test_out_2-eye(26))))/2; 25!!!!!!!!!!!
Function Approimation: Sin • Input patterns: • p=[-1:0.05:1]; • p=2*pi*p;
Function Approimation: Sin • Target • t=sin(p)+0.1*randn(size(p));
Function Approimation: Sin • plot(p, t, 'DisplayName', 'p', 'XDataSource', 'p', 'YDataSource', 't'); figure(gcf)
Function Approimation: Sin • New Network
Function Approimation: Sin • View Network
Function Approximation: Sin • Train
Function Approximation: Sin • Performance
Function Approximation: Sin • Regression
Function Approximation: Sin • Simulate • testp=[pi/6, pi/4, pi/3, pi/2];