1 / 37

Rare Decays

Rare Decays. and their sensitivity to New Physics. Klassiker:. hep-ph / 0108037. mSUGRA Parameter:. Light chargino bounds from LEP, Radiative EWSB. LSP not neutral. hep-ph / 0108037. < 5.8 · 10 -8 95% CL. arXiv:0712.1708 to PRL. 2 fb -1. < 9.3 · 10 -8 95% CL. D0 Note 5344-Conf (2007).

aprilgarcia
Download Presentation

Rare Decays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Rare Decays and their sensitivity to New Physics

  2. Klassiker: hep-ph/0108037 mSUGRA Parameter:

  3. Light chargino bounds from LEP, Radiative EWSB LSP not neutral hep-ph/0108037

  4. < 5.8·10-895% CL arXiv:0712.1708 to PRL 2 fb-1 < 9.3·10-895% CL D0 Note 5344-Conf (2007)

  5. Problem: Untergrundunterdrückung Invariante Masse keine ausreichende Diskriminate Multivariate Analyse

  6. Bs Impact Parameter Lifetime of B Muon Pion Likelihood (LL) DOCA between muons Muon Impact Parameter Sign. Muon Kaon Likelihood (LL) Isolation Geometry Likelihood PID Likelihood signal bb inclusive b b BcJ/ 

  7. 3-dim. Binning: • 4 Bins in Geometry LL • 3 Bins in PID LL • 5 Bin in invarianter Masse signal bb inclusive Untergrund Ereignisse/Bin Signalereignisse/Bin (BR) Sensitivität

  8. BR excluded at 90 % CL, i.e. only background is observed BR observed or discovered. Exclude the interesting region between 10-8 and SM with little Lumi (~0.5 fb-1) Observe (discover) SM BR with 3 (5) after ~2 (~6) fb-1

  9. Events after preselection cuts in 600 (60) MeV mass window

  10. Radiative bs decays • Standard Model bs (bs): • LH s-quark (RH s-quark) • LH (RH) photons BSM physics (SUSY, LR Models) could lead to appreciable RH  component photon helicity probes BSM physics • Probing photon helicity: • (Photon conversion) • Time dependent ACP: • Parity-odd triple correlations between photon and 2 out of 3 hadrons in B (K+p+p-) decays • b(X)

  11. B0sFg Erste Beobachtung von Bs (Ball et al.) [1] hep-ph/0607258 [2] arXiv:hep-ex/0607071v1

  12. Why this decay ? sensitive to NP

  13. What do we expect at LHCb ? Expected for one year of measurement ( 2 fb-1 ) • have to fight background • very good PID necessary, 0 rejection • proper time resolution (Time dependent CPV  g polarization) • high trigger efficiency • good offline selection

  14. Reconstruction and Selection g K- SV K+ F PV Selection mainly based on • two body kinematics • geometrical cuts on pp-interaction PV and B-decay SV Selection criteria maximize  with  = S: signal evts B: background evts

  15. Some selection criteria… • Photon selection • 2 body kinematics hard ET(g) • spectrum • from numerous p0 decay soft g • Require ET(g) > 2.8 GeV • On the way to the  • Charged tracks must NOT • come from PV (t of B) • K+K- should come from SV

  16. Some selection criteria… • On the way to the B • pB = p+ pg should point to PV • use qB ( allow rather large qB as the SV resolution is not good because of K’s !) flight path SV qB reconstructed p PV

  17. Background… K+ B qH F K- • large background fromB0sFp0 und BK*0 • use vector meson polarization • helicity of F = 0 for B0sFp0 • F = 1 for B0sFg • define helicity angle qH • sin2qHdistribution for signals • cos2qHdistribution for • correlated bkg • flat for combinatorial bkg

  18. And finally one gets… B0K0*g B0K0*g • Expect 68k signal events for 2 fb-1 with B/S < 0.6 Bsfg • Expect 11.5k signal events for 2 fb-1 with B/S < 0.6 • red: true events • blue : comb. bkg.

  19. g Polarization • g from bsg predominantly left-handed (SM: V-A • coupling of W boson) • e.g. in MSSMg can be largely right-handed • ( doesn’t effect incl. radiative decay rate predicted by • SM) • helicity measurement via time-dependent CP asymmetry, …

  20. g Polarization amplitudes Relative amount of „wrong photon polarization“ Weak phases (CP odd)

  21. Time dependent decay rate Standard Model:

  22. CP Asymmetry The CP asymmetry From the time dependent decay rate one gets The measurement of AD determines the fraction of ‘different-polarized’ photons ! LHCb Toy study: for 2 fb-1

  23. Interesting observable: Muon forward-backward Asymmetry Asymmetrie:

  24. hep-ph/9910221 „Zero crossing point:“

  25. Generator Studie: 6.5 M Ereignisse. Change in order to which Wilson coefficients are calculated.

  26. M2 mass distributiuon Forward backward asymmetry SM SM SUGRA SUGRA Upper/lower lines C7 < 0 / C7 > 0 MIA SUSY MIA SUSY MIA SUSY C10 >0 (lower lines = pure short distance components) MIA = Flavor violating SUSY, mass insertion approx. A. Ali et al. hep-ph/9910221

  27. Non-resonant background: Upper limit: BR < 4  10-7 173075 events / 2 fb-1 irreducible Asymmetry In kinematischer Region II erwartet man gleiche Afb wie für K*ll

  28. Q2 Verteilung für Daten-Set von 2 fb-1: signal Untergrund (fluktuiert), flach in M Bemerkung: Nicht-resonanter Untergrund wird vernachlässigt. Signal Ereignisse: 37001200 Untergund: 1100 250 (non-res ignoriert)

  29. 2 fb-1 AFB (s0) = 0.46 (s0) = 0.27 (10 fb-1) s=m2 [GeV2] Statistische Signifikanz des Zero-Crossing Punktes: (aus 10000 toy Experimenten) Kein Untergrund: 0.41 GeV2 Mit Untergrund (kein non-res): 0.46 GeV2 / 0.27 GeV2 Standardmodell: s02 = 4.2  0.6 GeV2 Systematische Effekte sind bisher noch nicht untersucht !!

More Related