1 / 42

Idrogenasi

Idrogenasi. ______________________________________________________. Reverse Engineering of Hydrogenases Function. ______________________________________________________. Hydrogenases were discovered 80 years ago Three evolutionary distinct families

apu
Download Presentation

Idrogenasi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Idrogenasi ______________________________________________________

  2. Reverse Engineering of HydrogenasesFunction ______________________________________________________ • Hydrogenases were discovered 80 years ago • Three evolutionary distinct families • TechnologicalRelevance (Energy carrier) • H2 oxidation vs H+ reduction (H2 2H+ + 2e-) • Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R, Polivka T, • Ott S, Stensjo K, Styring S, Sundstrom V, Hammarstrom L, Acc. Chem. Res. 2009, 42, 1899 • Lukey MJ, Parkin A, RoesslerMM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA,J. Biol. Chem. 2010, 285, 3928

  3. H2asenergycarrier (near -?- future)

  4. Renewableenergies • Renewableenergies are thoseenergyformsobtainedfrom: • - regenerablesources • - sourcesthat are notdepletable on human-timescales. • "renewableenergies“: sun, wind, hydro, wave, geothermal • “non-renewableenergies“: fossilfuels, coal, natural gas, uranium. Solarenergy (clean, cheap, abundant) Difficultto catch and “store” in suitableenergycarriers

  5. H2asenergycarrier (distant -?- future) • water electrolysisusingsolarenergy

  6. Biological production of H2

  7. Reverse Engineering of HydrogenasesStructure ______________________________________________________ Three evolutionary distinct families: • [NiFe]-hydrogenases Volbeda A, Charon M H, Piras C, Hatchikian E C, Frey M, Fontecilla_Camps J C, Nature, 1995, 373, 580

  8. Reverse Engineering of HydrogenasesStructure ______________________________________________________ Three evolutionary distinct families: • [FeFe]-hydrogenases • Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C, Science, 1998, 282, 1853 • Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C, Structure, 1999, 7, 13

  9. Reverse Engineering of HydrogenasesStructure ______________________________________________________ Three evolutionary distinct families: • [Fe]-hydrogenases Shima, S., Pilak, O., Vogt, S., Schick, M., Stagni, M.S., Meyer-Klaucke, W., Warkentin, E., Thauer, R.K., Ermler, U. Science 2008, 321, 572

  10. Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism • Hox and Hred are catalyticallyactivestates • the coordination site trans toµ-CO isvacant H+, H2 , CO • NicoletY, de Lacey A, Fernandez V, Hatchikian E, Fontecilla-Camps J, J. Am. Chem. Soc., 2001, 123, 1596 • Fan H, Hall M, J. Biol. Inorg. Chem., 2001, 6, 467 • Liu Z, Hu P,J. Am. Chem. Soc, 2002, 124, 5175 • Fan H,Hall M,J. Am. Chem. Soc, 2002, 124, 4006 • ZampellaG, Greco C, Fantucci P, De Gioia L, Inorg. Chem., 2006, 45, 4109

  11. Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism Fe(I)Fe(I), Fe2(III)Fe2(II), in agreement with experimental data

  12. Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism Strongly exoergonic

  13. Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism Fe(II)Fe(II), Fe2(III)Fe2(II) m-hydride thermodynamically more stable also in the protein

  14. Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism No H2formation on Fe(II)Fe(II)

  15. Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism • Reduction would take place on Fe4S4, then protonation of dtma would trigger electron transfer from Fe4S4 to Fe2S2. 2 1

  16. Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism m- and terminal- hydrides are almostisoenergetic

  17. Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism H2 formation is spontaneous on an Fe(II)Fe(I) species

  18. Team and collaborations _______________________________________________________ • Luca Bertini • Maurizio Bruschi • PiercarloFantucci • Claudio Greco • Giuseppe Zampella • Tom Rauchfuss, Universityof Illinois at Urbana-Champaign, USA • UlfRyde, UniversityofLund, Sweden • Chris Pickett, Universityof East Anglia, UK • Jean Talarmin, Philippe Schollhammer, Université de Bretagne Occidentale, France • Markus Reiher, ETH Zurich, Switzerland

  19. [NiFe]-hydrogenases ______________________________________________________ • Redox state of metal ions • Structure of intermediate species • Electronic configuration of the Ni ion Lubitzet al.; Chem. Phys. Chem. 2010, 11, 1127 QC studies

  20. [FeFe]-hydrogenases ______________________________________________________ DeLaceyet al. Chem. Rev., 2007, 107, 4304 • Redox state of metal ions • Structure of intermediate species • Chemical nature of the chelating ligand QC studies

  21. Structure-functionrelationships ______________________________________________________ [NiFe] hydrogenases: catalytic mechanism H2bindingto Fe(II) H2cleavage on a Ni(III)Fe(II) form Fan, H.-J.; Hall, M. B. J. Biol. Inorg. Chem.2001, 6, 467   

  22. Structure-functionrelationships ______________________________________________________ [NiFe] hydrogenases: catalytic mechanism Fan, H.-J.; Hall, M. B. J. Biol. Inorg. Chem.2001, 6, 467   

  23. Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism BP-86/TZVP results ΔG path= 2.6 kcal/mol Δ G≠path= 1.0 - 3.0 kcal/mol • Liu Z, Hu P,J. Am. Chem. Soc, 2002, 124, 5175 • Fan H,Hall M,J. Am. Chem. Soc, 2002, 124, 4006; • ZampellaG, Greco C, Fantucci P, De Gioia L,Inorg. Chem., 2006, 45, 4109

  24. a Structure-functionrelationships ______________________________________________________ [FeFe] hydrogenases: catalytic mechanism BP-86/TZVP results ΔG path a = 18.3 kcal/mol Δ G≠path a = 22.6 kcal/mol Δ G path b = -3.3 kcal/mol Δ G≠path b = 8.9 kcal/mol Zampella G, Greco C, Fantucci P, De Gioia L, Inorg. Chem., 2006, 45, 4109

  25. Role of ligands on geometric features ______________________________________________________ • rotated vsunrotated structures Bruschi M., Fantucci P., De Gioia L. Inorg. Chem. 43, 3733 (2004)

  26. Isocyanides in [FeFe] hydrogenases? _____________________________________________________ • HOMO is localized on the [2Fe]Hsubcluster • LUMO is localized on the Fe4S4subcluster • HOMO–LUMO gap is small • Similar results are obtained for proximal CN protonation Hred

  27. Isocyanides in [FeFe] hydrogenases? _____________________________________________________ • LUMO is localized on the [2Fe]Hsubcluster • Relevance for H2 uptake • Similar results are obtained for proximal CN protonation Hox

  28. Isocyanides in [FeFe] hydrogenases? _____________________________________________________ Hox • LUMO is localized on the Fe4S4subcluster • unoccupied MOs on [2Fe]H are shifted to more positive energies.

  29. Protonationregiochemistry ______________________________________________________ Zampella G, Fantucci P, De Gioia L, J. Am. Chem. Soc. 2009, 131, 10909

  30. Protonation regiochemistry ______________________________________________________ a. The reaction product does not correspond to an energy minimum structure and evolves back to reactant (the FeFe complex + triflic acid).

  31. Protonation regiochemistry ______________________________________________________ a. The reaction product does not correspond to an energy minimum structure and evolves back to reactant (the FeFe complex + triflic acid).

  32. Rfree factor: it is an R factor calculated for a set of reflections(typically 5–10%) that is not used in the refinement ofthe structure. It is an objective quality criterion that isused to avoid overfitting of the model

  33. Structure-functionrelationships ______________________________________________________ Relative stabilityofmu- and terminal-hydrides The energy difference between m-H and t-H species is a function of the subclusterredox and protonation state. In particular, the energy gap decreases upon protonation of dtma and concomitant reduction of the binuclear cluster

  34. What’s next? ______________________________________________________

  35. Discutere H2 formation vs H2 cleavage???

More Related