970 likes | 1.08k Views
Understand the Clausius-Clapeyron Equation's impact on evaporation, condensation, equilibrium states, pressure, and volume changes. Learn to calculate saturation vapor pressure and dew points.
E N D
Clausius-Clapeyron Equation And you thought you were already saturated!
Reading • Hess • pp 39 - 42 • pp 46 – 51 • Tsonis • pp 73 - 86 • Wallace & Hobbs • pp 97 – 99 • Bohren & Albrecht • pp 192-195, 202-203
Objectives • Be able to describe the physical processes of net evaporation, net condensation and equilibrium • Be able to describe the changes that occur to water substance as pressure and volume changes on a phase diagram
Objective • Be able to state the only factor that determines the rate of evaporation from a water surface • Be able to state the factor that determines the rate of condensation of water molecules from the air
Objective • Be able to determine if net evaporation, net condensation or equilibrium exists given a temperature and pressure on a pressure vs. temperature diagram for water substance
Objective • Be able to perform calculations using the Clausius Clapyeron Equation, including the determination of saturation vapor pressure. • Be able to describe the change in boiling point temperature with pressure
Objective • Be able to provide the definition of dew point and frost point from memory • Be able to provide the definition of relative humidity from memory
Objective • Be able to calculate relative humidity • Be able to distinguish the difference between WMO and traditional defintions of relative humidity
Twater Water at Equilibrium • Rate of evaporation • Constant • Function of water temperature
Water at Equilibrium • Rate of Condensation • Variable • Function of water vapor mass in air
Rate of evaporation Rate of condensation = Water at Equilibrium • At Equilibrium
Water at Equilibrium • At Equilibrium • Rate of evaporation is a function of temperature Evaporation = f(T) Twater Rate of evaporation Rate of condensation =
Tair Twater Rate of evaporation Rate of condensation = Water at Equilibrium • At Equilibrium • Rate of condensation also a function of temperature. Condensation = f(T)
Tair Twater Rate of evaporation Rate of condensation = Water at Equilibrium • At Equilibrium Tair = Twater
Water at Equilibrium • Water Vapor Partial Pressure • Function of mass of water vapor
Water at Equilibrium • Equilibrium Curve Rate of Condendation = Rate of Evaporation es Equilibrium es = water vapor pressure at equilibrium (saturation) Pressure Temperature
Condensation • Water Vapor Pressure > Equilibrium es e > es e Pressure Temperature
Condensation • Water Vapor Pressure > Equilibrium Net Condensation es e > es e Pressure Temperature
Condensation • Water Vapor Pressure > Equilibrium Condensation = Evaporation es e = es Pressure e Temperature
e Evaporation • Water Vapor Pressure < Equilibrium es Net Evaporation Pressure e < es Temperature
e Evaporation • Water Vapor Pressure < Equilibrium es Net Evaporation Pressure e < es Temperature
Evaporation • Water Vapor Pressure < Equilibrium Condensation = Evaporation es e = es Pressure e Temperature
Water at Equilibrium • Equilibrium Curve • Values es 1013 mb Pressure 6 mb 0oC 100oC Temperature
Water at Equilibrium • Equilibrium Curve • Where do these numbers come from? es 1013 mb Pressure 6 mb 0oC 100oC Temperature
Water at Equilibrium • Equilibrium Curve • Where do these numbers come from? Clausius-Clapeyron Equation Jaimie Clapeyron Thelma Clausius Famous Clip Art Scientists!
Clausius-Clapeyron Equation Rudolf Clausius 1822 – 1888 German Mathematical Physicist Emile Clapeyron 1799 - 1864 French Engineer
Clausius-Clapeyron Equation • The amount of moisture in the air (at equilibrium) depends on • Temperature of Air/Water • Water Vapor Pressure of Air • Volume (or Specific Volume) of Air Equilibrium es Pressure Constant Volume Temperature P-T Diagram
Equilibrium es Constant Volume Pressure P-T Diagram Temperature Clausius-Clapeyron Equation • Our discussion assumed constant volume
Clausius-Clapeyron Equation • The volume of water substance changes during phase changes Gas Solid Liquid
Clausius-Clapeyron Equation • Pressure-Volume Diagram • Ideal Gas Pressure Volume
Clausius-Clapeyron Equation • Pressure-Volume Diagram • Ideal Gas Pressure Volume
Clausius-Clapeyron Equation • Pressure-Volume Diagram Vapor Water T3 O2 … -119oC N2 … -147oC H20 .. 347oC Pressure (e) Water & Vapor Vapor T2 T1 Volume (V)
Pressure-Volume Diagram • Also known as Phase Diagram Water Vapor Pressure (e) Water & Vapor T2 T1 Volume (V)
Pressure-Volume Diagram • Isotherms • T2>T1 Water Vapor Pressure (e) Water & Vapor T2 T1 Volume (V)
Pressure-Volume Diagram • Vapor Phase • Ideal Gas Law • Decrease Volume • Increase Pressure Water Vapor Pressure (e) Water & Vapor T2 B T1 A Volume (V)
Pressure-Volume Diagram • Water & Vapor Phase (B) • Slight Change in Volume Causes Condensation Water Vapor Pressure (e) Water & Vapor T2 B T1 Volume (V)
Pressure-Volume Diagram • Water & Vapor Phase (B to C) • Condensation • Volume Decreasing • Constant Pressure at Constant Temp. Water Vapor Pressure (e) Water & Vapor T2 C B T1 Volume (V) Condensation
Pressure-Volume Diagram • Water & Vapor Phase (B to C) • Condensation • Water Vapor Pressure is at Equilibrium (es) Water Vapor Pressure (e) Water & Vapor T2 C B T1 Volume (V)
Pressure-Volume Diagram • Water Phase (C) • All Water Vapor Has Condensed Water Vapor Pressure (e) Water & Vapor T2 C T1 Volume (V)
Pressure-Volume Diagram • Water Phase (C to D) • Volume Decreases Little • Virtually Incompressible D Water Vapor Pressure (e) Water & Vapor T2 C T1 Volume (V)
Clausius-Clapeyron Equation • We’ve also ignored the heat required for phase change + =
Water Vapor Pressure (e) Water & Vapor T2 T1 Volume (V) Clausius-Clapeyron Equation • Let’s investigate all these variables using the Carnot Cycle!
Clausius-Clapeyron Equation • Reversible cycle C B Water Vapor Pressure (e) Water & Vapor T2 D A T1 Specific Volume (a)
Clausius-Clapeyron Equation • At Point A Water Vapor es = Pressure T1 = Temperature aw = Volume C B Water & Vapor T2 Pressure (e) A D es T1 es,T1 , aw Specific Volume (a)
Clausius-Clapeyron Equation • At Point B es+Des T1+DT aw +Daw Water Vapor Vapor Pressure es+Des Temperature T2 = T1+DT Volume aw +Daw es +Des C B Water & Vapor T2 Pressure (e) A D es T1 es,T1 , aw Specific Volume (a)
Clausius-Clapeyron Equation • At Point C es+Des T1+DT av +Dav Water Vapor Pressure es+Des Temperature T2 = T1+DT Volume av +Dav es +Des C Vapor B Water & Vapor T2 Pressure (e) A D es T1 es,T1 , av Specific Volume (a)
Clausius-Clapeyron Equation • At Point D es+Des T1+DT av +Dav Water Vapor es = Pressure T1 = Temperature av = Volume es +Des C Vapor B Water & Vapor T2 Pressure (e) A D es T1 es,T1 , av Specific Volume (a)
Clausius-Clapeyron Equation • First Law of Thermodynamics • Second Law of Thermodynamics
Clausius-Clapeyron Equation • Combine the equations • Integrate over the closed path
Clausius-Clapeyron Equation • For a cyclic process • So …..