1 / 18

nat Mg(p,p) nat Mg cross-sections: benchmark experiment

nat Mg(p,p) nat Mg cross-sections: benchmark experiment. Chris Jeynes and Alex Gurbich University of Surrey Ion Beam Centre, Guildford Institute for Physics and Power Engineering, Obninsk. IAEA CRP on elastic scattering cross-sections for IBA 18-21 June 2007, Wien. Contents. Mg(p,p)Mg

aquila
Download Presentation

nat Mg(p,p) nat Mg cross-sections: benchmark experiment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. natMg(p,p)natMg cross-sections: benchmark experiment Chris Jeynes and Alex Gurbich University of Surrey Ion Beam Centre, Guildford Institute for Physics and Power Engineering, Obninsk IAEA CRP on elastic scattering cross-sections for IBA 18-21 June 2007, Wien

  2. Contents • Mg(p,p)Mg • C(p,p)C example: C implant in Si • CuInAlSe/glass example: Na(p,p)Na??? • SigmaCalc O(a,a)O: bad at top of range? • Si(a,a)Si?? • H in GaN ERD: interference?

  3. Mg(p,p)Mg: measurement conditions • Bulk Mg sample • Multilayer Au/Mg/Au/Mg/Au/C sample

  4. Mg(p,p)Mg: high precision measurements Electronic gain determined for whole data set using PHD correction (Lennard): Gain uncertainty <0.1% Offset uncertainty ~600eV

  5. 1216keV Mg(p,p)Mg: data, theory & benchmark

  6. 1506 keV O O O 942.5 keV 1752 keV Mg(p,p)Mg, benchmark 942keV: shows resonance at 823keV 1506keV: shows resonance at 1483keV 1752keV: shows resonances at 1483keV and 1650keV (68TFU C & 800TFU MgO on surface)

  7. Mg(p,p)Mg, benchmark (multilayer sample)

  8. Mg(p,p)Mg, multilayer sample conclusions

  9. C O Mg 1483keV Mg 1630keV 1752keV H+ Q= 1720 EBS Elastic (non-Rutherford) BackScattering (Left) Spectrum of bulk magnesium with 68.1015 C/cm2 and 800.1015 MgO/cm2 on the surface (Below, left) SigmaCalc scattering cross-sections for natural Mg (the isotopes behave differently) at two different scattering angles (Below, right) Sharp resonance at 1483keV in more detail (FWHM 400eV)

  10. (1113±7).1015 C/cm2 30keV 5000C Mar06 data (TypeA uncertainty) E0 = 1730keV WDEPTH: Szilágyi++, NIM B100, 1995, 103 1% pileup in C: W&G NIM 133, 1976, 303 20nA, 100secs DataFurnace AUTOL option 4% effect: Gurbich++ NIM B190, 2002, 237 Resonance option 7% effect: Barradas++ NIM B247, 2006, 381

  11. Gurbich (SigmaCalc 2007): theta = 149.20 (lab) Bauman et al (1956): theta = 1560 (cm) EBS cross-sections

  12. Contents • The Inverse Problem in IBA (RBS/EBS/ERD/NRA) and Simulated Annealing (DataFurnace code) • Accurate Thin Film Depth Profiling in IBA • PIXE + particle scattering spectroscopies for depth profiling • Example 1: Pb glass standard – sanity check • Example 2: CuInAl thin films (photovoltaics) • Conclusions

  13. Mo Si CIS O In Se Cu Selenised CuInAl precursor, Mo electrode, glass substrate1554 KeV He RBS, 2070 keV H EBS glass CuInAlSe Mo Fit with Cu 31 In 23, Al 1, Se 46 RBS: unambiguous Cu:In:Se ratio EBS: Mo thickness (poor fit) But how much Al is there really?

  14. Selenised CuInAl precursor, Mo electrode, glass substrate1554 KeV He RBS, 2582 keV H RBS/EBS/PIXE Simultaneous self-consistent automatic fitting of RBS, EBS, and 3 * PIXE spectra = Cu 21 In 25, Al 6, Se 47 RBS: Cu:In:Se ratio EBS: Mo thickness PIXE: Al content (indirectly from the Si substrate signal): As & Fe also detected EBS RBS Glass CuInAlSe Mo 450 exit 250 exit 200 exit X-ray counts, log scale, red=data, blue=fit

  15. Gurbich (SigmaCalc 2007): theta = 149.20 (lab) Bauman et al (1956): theta = 1560 (cm) EBS cross-sections: Si & O from SigmaCalcEBS cross-sections: Na? ad hoc, & c.f. Al(p,p)Al! Na

  16. O Au Si Ni natSi(a,a)natSi, 16O(a,a)16O; 4018keV 4He EBS Blue data: theta=1500 Red data: theta=1700 O: SigmaCalc cross-sections Si: Leung 1972, theta=1650 O: Demarche & Terwagne 2006, 1700 Si: Leung 1972, modified>3870keV for theta=1500

  17. Surface H Surface H H in GaN: ERD interferences? 4018keV 4He 60keV H in Si ERD: 24um range foil, 300 scattering 60keV H in GaN: interference from 14N(a,p)17O?? Cross-sections only available for 1350

  18. Conclusions • Mg(p,p)Mg: • (i) High precision measurements 700keV - 1750keV with gain determined <0.1%; • (ii) SigmaCalc confirmed at 2.2% accuracy; • (iii) 1483keV resonance @400eV too narrow to determine directly: indirect thick film EBS works • C(p,p)C example: C implant in Si determined at <1% precision with SigmaCalc using DEPTH, W&G pileup, NDF AUTOL, NDF resonance • CuInAlSe/glass example: Na(p,p)Na needed! • SigmaCalc O(a,a)O: bad at top of range • SigmaCalc Si(a,a)Si needed • 60keV H in GaN (He ERD): interference from 14N(a,p)17O (no Xsections at forward angle!)

More Related