770 likes | 982 Views
Frequency Response & Resonant Circuits. Filters, frequency response, time domain connection, bode plots, resonant circuits. Outline and topics. Reading Boylestad Ch 21.1-21.11 Boylestad Ch 20.1-20.8. Low-pass filters High-pass filters Other filters Resonance (Ch 20)
E N D
Frequency Response & Resonant Circuits Filters, frequency response, time domain connection, bode plots, resonant circuits.
Outline and topics Reading Boylestad Ch 21.1-21.11 Boylestad Ch 20.1-20.8 • Low-pass filters • High-pass filters • Other filters • Resonance (Ch 20) • Ideal op-amps and active filters • Decibels & log scales • Linear systems and transfer functions • Bode plots
FILTERS • Any combination of passive (R, L, and C) and/or active (transistors or operational amplifiers) elements designed to select or reject a band of frequencies is called a filter. • In communication systems, filters are used to pass those frequencies containing the desired information and to reject the remaining frequencies.
FILTERS • In general, there are two classifications of filters: • Passive filters-gain always<1 • Active filters-gain can be >1
FIG. 21.7 Defining the four broad categories of filters. FILTERS
FIG. 21.9 R-C low-pass filter at low frequencies. FIG. 21.8 Low-pass filter. R-C LOW-PASS FILTER
FIG. 21.10 R-C low-pass filter at high frequencies. FIG. 21.11 Vo versus frequency for a low-pass R-C filter. R-C LOW-PASS FILTER
FIG. 21.12 Normalized plot of Fig. 21.11. R-C LOW-PASS FILTER
FIG. 21.13 Angle by which Vo leads Vi. R-C LOW-PASS FILTER
FIG. 21.14 Angle by which Vo lags Vi. R-C LOW-PASS FILTER
FIG. 21.15 Low-pass R-L filter. FIG. 21.16 Example 21.5. R-C LOW-PASS FILTER
FIG. 21.17 Frequency response for the low-pass R-C network in Fig. 21.16. R-C LOW-PASS FILTER
FIG. 21.18 Normalized plot of Fig. 21.17. R-C LOW-PASS FILTER
FIG. 21.19 High-pass filter. R-C HIGH-PASS FILTER
FIG. 21.20 R-C high-pass filter at very high frequencies. FIG. 21.21 R-C high-pass filter at f =0 Hz. R-C HIGH-PASS FILTER
FIG. 21.22 Vo versus frequency for a high-pass R-C filter. R-C HIGH-PASS FILTER
FIG. 21.23 Normalized plot of Fig. 21.22. R-C HIGH-PASS FILTER
FIG. 21.24 Phase-angle response for the high-pass R-C filter. R-C HIGH-PASS FILTER
FIG. 21.25 High-pass R-L filter. R-C HIGH-PASS FILTER
FIG. 21.26 Normalized plots for a low-pass and a high-pass filter using the same elements. R-C HIGH-PASS FILTER
FIG. 21.27 Phase plots for a low-pass and a high-pass filter using the same elements. R-C HIGH-PASS FILTER
FIG. 21.28 Series resonant pass-band filter. PASS-BAND FILTERS
RLC Circuits-resonance! • The resonant electrical circuit must have both inductance and capacitance. • In addition, resistance will always be present due either to the lack of ideal elements or to the control offered on the shape of the resonance curve. • When resonance occurs due to the application of the proper frequency ( fr), the energy absorbed by one reactive element is the same as that released by another reactive element within the system.
SERIES RESONANT CIRCUIT • A resonant circuit (series or parallel) must have an inductive and a capacitive element. • A resistive element is always present due to the internal resistance of the source (Rs), the internal resistance of the inductor (Rl), and any added resistance to control the shape of the response curve (Rdesign).
FIG. 20.2 Series resonant circuit. SERIES RESONANT CIRCUIT
FIG. 21.29 Parallel resonant pass-band filter. PASS-BAND FILTERS
FIG. 21.30 Series resonant pass-band filter for Example 21.7. PASS-BAND FILTERS
FIG. 21.31 Pass-band response for the network. PASS-BAND FILTERS
FIG. 21.32 Normalized plots for the pass-band filter in Fig. 21.30. PASS-BAND FILTERS
FIG. 21.33 Pass-band filter. PASS-BAND FILTERS
FIG. 21.34 Pass-band characteristics. PASS-BAND FILTERS
FIG. 21.36 Pass-band characteristics for the filter in Fig. 21.35. FIG. 21.35 Pass-band filter. PASS-BAND FILTERS
FIG. 21.37 Network of Fig. 21.35 at f =994.72 kHz. PASS-BAND FILTERS
BAND-REJECT FILTERS • Since the characteristics of a band-reject filter (also called stop-band or notch filter) are the inverse of the pattern obtained for the band-pass filter, a band-reject filter can be designed by simply applying Kirchhoff’s voltage law to each circuit.
FIG. 21.38 Demonstrating how an applied signal of fixed magnitude can be broken down into a pass-band and band-reject response curve. BAND-REJECT FILTERS
FIG. 21.39 Band-reject filter using a series resonant circuit. BAND-REJECT FILTERS
FIG. 21.40 Band-reject filter using a parallel resonant network. BAND-REJECT FILTERS
FIG. 21.41 Band-reject filter. BAND-REJECT FILTERS
FIG. 21.42 Band-reject characteristics. BAND-REJECT FILTERS
Operational amplifiers Active filters
amplifiers give gain • Simple amp-1 input and 1 output • Gain, A=Vout/Vin
Example • If the amplifier above gives an output voltage of 1000V with an input voltage of 50V, what is the gain?
ideal operational-amplifier(op-amp) http://www.youtube.com/watch?v=TQB1VlLBgJE • Inputs draw no current-infinite input impedace • Vout=A(Vplus-Vminus) A-open loop gain. • A is ideally infinity-How is this useful? • Output can provide as much voltage/current as needed-zero output impedance
negative feedback • Negative feedback (NF) tries to reduce the difference • with NF, Vplus=Vminus ALWAYS • summing point constraints • virtual ground.
Inverting amplifier • Input goes into Vminus input-INVERTING input • Gain, Ainv=-R2/R1, gain is negative because inverting
inverting amplifier • Vplus=Vminus • Inputs draw no current
Non-inverting amplifier • Input goes into Vplus input-NON-INVERTING input • Gain, Ainv=1+R2/R1, gain is positive
unity gain buffer • Gain is 1 i.e. Vin=Vout • Used to isolate one side from the other
Real op-amps http://www.national.com/mpf/LM/LM324.html#Overview • Output voltage determined by rails (power supply) • Open loop gain not infinity • Inputs draw small amount of current-nA’s or less Quad LM324 Single LM741