1 / 36

Sistemi Peer To Peer (P2P) Avanzati

Sistemi Peer To Peer (P2P) Avanzati. Gennaro Cordasco cordasco[@]dia.unisa.it http://www.dia.unisa.it/~cordasco Laboratorio ISISLAB2 (L8 a Baronissi). P2P: Alcune definizioni.

arama
Download Presentation

Sistemi Peer To Peer (P2P) Avanzati

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sistemi Peer To Peer (P2P) Avanzati • Gennaro Cordasco • cordasco[@]dia.unisa.it • http://www.dia.unisa.it/~cordasco • Laboratorio ISISLAB2 (L8 a Baronissi)

  2. P2P: Alcune definizioni • Sistema distribuito nel quale ogni nodo ha identiche capacità e responsabilità e tutte le comunicazioni sono potenzialmente simmetriche; • Siamo interessati ai sistemi P2P di seconda generazione, quelli che supportano DHT (Distributed Hash Table); • P2P Puro; • Analizzeremo alcuni protocolli Chord like; • Si basano sul ring; • Utilizzano consistent hashing; • Join/Leave uguali a Chord; • Cambiano i vicini (finger) e l’algoritmo di routing; Es: Chord

  3. P2P: Scalabilità • Il lavoro richiesto a un determinato nodo nel sistema non deve crescere (o almeno cresce lentamente) in funzione del numero di nodi nel sistema; • La scalabilità di un protocollo dipende: • dalla topologia della rete; • dall’algoritmo di routing. • Obiettivi: • Minimizzare il numero di messaggi necessari per fare lookup; • Minimizzare, per ogni nodo, le informazioni relative agli altri nodi;

  4. Condizioni necessarie ma non sufficienti Dal punto di vista topologico • Consideriamo una rete P2P come un grafo G=(V,E), dove V è l’insieme dei nodi nel sistema e E rappresenta l’insieme delle interconnessioni fra essi: • Minimizzare, per ogni nodo, le informazioni relative agli altri nodi: • minimizzare il grado dei nodi; • Minimizzare il numero di messaggi necessari per fare lookup: • Minimizzare il diametro; • Minimizzare l’average path lenght (APL), vale a dire, la distanza media fra due nodi nel grafo.

  5. Es. Chord • Consideriamo un anello con n=2b nodi; • Ogni nodo x ha un etichetta a b bit che denotiamo con id(x); • I vicini del nodo x sono i nodi (x+2i) mod 2b i = 0,1, ,b-1; jump 000 111 001 110 010 101 011 b=3 100

  6. 000 Es. Chord 111 001 110 010 • Quanto valgono: • grado? • diametro? • average path lenght? 101 011 b=3 100 Il grado è b = log n

  7. 000 Es. Chord 111 001 110 010 • Dati due nodi x e y la loro distanza d(x,y) è uguale al numero di “1” che ci sono nella stringa binaria (y-x) mod 2b. • Infatti i jump necessari per passare dal nodo x al nodo y sono quelli relativi alla posizione degli “1” nella stringa binaria (y-x) mod 2b. 101 011 b=3 100

  8. 000 Es. Chord 111 001 110 010 • Calcoliamo la distanza tra il nodo 3 e il nodo 6: • (6-3) mod 8 = 3 = 011 (un jump da 2 e uno da 1). • Calcoliamo la distanza tra il nodo 6 e il nodo 3: • (3-6) mod 8 = 5 = 101 (un jump da 4 e uno da 1). Il diametro è b = log n 101 011 b=3 100 d(x,y) può essere diverso da d(y,x) Chord non è simmetrico

  9. diametro Anello n -1 Chord e altri Grafo completo O(log n) 1 1 O(log n) n -1 grado n è il numero dei peer;

  10. 000 Es. Chord 111 001 110 010 • Quanto vale l’average path lenght? 101 011 b=3 100 N denota l’insieme dei nodi

  11. Per semplicità consideriamo un sistema Chord like Sistemi P2P uniformi k=grado l=diametro • Denotiamo con Jx,i l’iesimo jump del nodo x; • Un sistema P2P viene detto uniforme, se per ogni coppia di nodi x e y, si ha Jx,i = Jy,i i =1,2,…,k. • Chord è uniforme? • APL sistemi uniformi: Si a è un generico nodo  N

  12. Sistemi P2P uniformi • Vantaggi: • Facili da implementare e da analizzare; • Algoritmo di routing semplice (greedy); • Routing locale, la procedura di lookup interessa solo i nodi che si trovano fra sorgente e destinazione; • Non c’è congestione sui nodi, vale a dire il traffico generato dai messaggi di lookup è più o meno uguale per tutti i nodi. • Fast bootstrap: • Poiché tutti i nodi utilizzano gli stessi jump, è possibile utilizzare la tabella di routing del proprio predecessore per velocizzare notevolmente l’operazione di join; • Svantaggi: • Sfortunatamente non sono gli algoritmi più efficienti. Lo vediamo fra un pò

  13. 000 Es. Chord 111 001 110 010 • Quanto vale l’average path lenght? • Scegliamo come nodo sorgente il nodo a=00…0; • La distanza fra a e il generico nodo x è uguale al numero di bit a 1 nella codifica binaria di x; 101 011 b=3 100 00…0 00…1 … 11…0 11…1 a

  14. k=grado l=diametro Fault tolerance and degree • Il grado di una rete P2P soggetta a fallimenti deve essere almeno Ω(log n). • Infatti, Ω(log n) risulta essere il minimo valore che permette alla rete di rimanere connessa anche nelle condizioni più proibitive; • Sketch: • Supponiamo che tutti i nodi della rete possono fallire con probabilità ½; • Ovviamente un nodo rimane disconnesso se tutti i suoi vicini si disconnettono contemporaneamente; • Vogliamo che la probabilità che un nodo non si disconnetta sia ≥ 1-1/n; • Pr[un nodo non si disconnette]=1-(1/2)k ≥ 1-1/n  1/n ≥(1/2)k  2k≥ n  k ≥ log n In realtà la prova è un po’ più complicata, ma questa rende bene l’idea

  15. P2P: grado e diametro • Abbiamo visto che il grado di una rete P2P soggetta a fallimenti deve essere almeno Ω(log n). • Esistono in letteratura molti protocolli che hanno grado e diametro pari a O(log n). • E’ possibile fare di meglio? • Fissiamo il grado pari O(log n), qual è il minimo diametro che riusciamo ad ottenere? • Fissiamo il grado pari O(log n), qual è il minimo APL che riusciamo ad ottenere? Chord, tapestry, pasty… Stiamo cercando dei Lower Bound

  16. k=grado l=diametro P2P: Lower Bound Teorema Dato un grafo G=(V,E) con |V| = n e grado k = O(log n), allora il diametro l = Ω(log n / log (log n)). Prova Dato che il grado è k e il diametro è l, ogni nodo può raggiungere al massimo altri nodi (compreso il nodo stesso). Poiché il grafo deve essere connesso, allora kl+1 > n  l > logk (n) - 1 =Ω(log n / log (log n)). Con argomentazioni analoghe si può dimostrare che anche l’APL è Ω(log n / log (log n)) in quanto la maggior parte dei nodi si trova a distanza l-O(1). Ma allora Chord non è ottimale!!!

  17. P2P: Lower Bound (Esempio 1) r • k = log n; • Ogni nodo ha grado k (k-1 figli e la radice dell’albero); • r raggiunge qualsiasi nodo in al più logk-1 n =O(log n / log (log n)) passi. • Il diametro è 1 + logk-1 n =O(log n / log (log n)). k-1 … … … Il grado in ingresso della radice è n-1

  18. P2P: Lower Bound (Esempio 2) r • k = log n; • Ogni nodo ha grado(entrante più uscente) k ( k/2 -1 ai figli e 1 al padre (x2)); • r raggiunge qualsiasi nodo in al più logk/2 -1 n = O(log n / log (log n)) passi. • Ogni nodo raggiunge r in al più logk/2 -1 n = O(log n / log (log n)) passi • Il diametro è O(log n / log (log n)). k/2 -1 … … …

  19. P2P: Lower Bound (Esempio 3) r • k = 6; • Ogni nodo ha grado(entrante più uscente) 6 ( 2 ai figli e 1 al padre (x2)); • r raggiunge qualsiasi nodo in al più log n passi. • Ogni nodo raggiunge r in al più log n passi • Il diametro è 2 log n. 2 … … La mole di traffico che spetta al nodo r è nettamente maggiore rispetto agli altri nodi La rete si disconnette se uno qualsiasi dei nodi (escluse le foglie) fallisce

  20. P2P: Lower Bound sistemi uniformi Teorema Consideriamo un sistema P2P uniforme con n nodi, sia k il numero dei vicini che ogni nodo mantiene, allora il lower bound per il diametro è 1/2log n (l ≥ 1/2log n ) se k  1/2log n. Prova Sia J = {Ji}1i k Consideriamo senza perdita di generalità un nodo x e calcoliamo tutte le n path fra x e tutti gli altri nodi.

  21. P2P: Lower Bound sistemi uniformi x compreso Sia P = {tutte le path da x agli altri n nodi} Sia f: P(N{0})k+1  p  P denotiamo con ap,i il numero di jump di taglia Ji usati nella path p con 1  i  k. Es Sia J={1,4,15} Sia p una path dal nodo 0 al nodo 9, (es. 4+4+1). Allora ap,1 = 1 , ap,2 = 2 e ap,3 = 0.

  22. P2P: Lower Bound sistemi uniformi x compreso Sia P = {tutte le path da x agli altri n nodi} Sia f: P(N{0})k+1 Ovviamente poiché l è il diametro della rete. Definiamo f(p):=(ap,0,ap,1,…ap,k).

  23. P2P: Lower Bound sistemi uniformi P = {tutte le path da x agli altri n nodi} f: P(N{0})k+1 f(p):=(ap,0,ap,1,…ap,k) Claim f è iniettiva (one to one) Prova Per assurdo supponiamo che esistano p e q  P tali che ap,i = aq,i  0  i  k. Quindi partendo dal nodo x, entrambe le path terminano nello stesso nodo destinazione. Assurdo: per definizione le path in P terminano in nodi diversi. Dominio Codominio

  24. P2P: Lower Bound sistemi uniformi Poiché f è iniettiva, la dimensione del codominio è maggiore o uguale alla dimensione del dominio (vale a dire |C| ≥ |D|=n). Quanto vale la dimensione del codominio? La dimensione del codominio è uguale al numero di vettori (a0,a1,…,ak) tali che a0+a1+…+ak =l

  25. P2P: Lower Bound sistemi uniformi Supponiamo di avere l biglie uguali e k+1 contenitori diversi. La dimensione del codominio è uguale al numero di modi in cui è possibile disporre l biglie identiche in k+1 contenitori diversi. … l … k+1

  26. P2P: Lower Bound sistemi uniformi Primo contenitore vuoto Secondo contenitore 3 biglie Terzo contenitore 1 biglia Quarto contenitore 1 biglia Quinto contenitore 2 biglie Sesto contenitore 5 biglie Rappresentiamo con “0” le biglie e separiamo con “1” i contenitori Con k “1” possiamo rappresentare k+1 contenitori, mentre con l “0” possiamo rappresentare l biglie; 00010000010110100 00110001101000000 10001010100100000 00000110001000011 Alcuni esempi 6 contenitori e 12 biglie

  27. P2P: Lower Bound sistemi uniformi 00010000010110100 00110001101000000 10001010100100000 00000110001000011 La dimensione del codominio è uguale al numero di combinazioni di k elementi su l+k; La dimensione del codominio è uguale al numero di combinazioni di l elementi su l+k; Alcuni esempi 6 contenitori e 12 biglie

  28. P2P: Lower Bound sistemi uniformi Sappiamo che Ci rimane da dimostrare che se k 1/2log n allora l ≥ 1/2log n .

  29. P2P: Lower Bound sistemi uniformi Proviamo che l≥k Per assurdo l<k E’ facile osservare che è crescente in l, quindi Assurdo Stirling approx Per ipotesi k  1/2log n.

  30. P2P: Lower Bound sistemi uniformi Proviamo che l ≥ 1/2log n Per assurdo l < 1/2log n E’ facile osservare che è crescente in k, quindi Assurdo, quindi l ≥ 1/2log n CVD.

  31. P2P: Lower Bound sistemi uniformi Teorema Consideriamo un sistema P2P uniforme con n nodi, sia k il numero dei vicini che ogni nodo mantiene, allora il diametro è Ω(log n) se k = O(log n). Prova La prima parte è identica al teorema precedente Solo conti, abbastanza noiosi. 

  32. diametro Anello n -1 Chord e altri Grafo completo LB O(log n) O(log n/ log(log n)) 1 1 O(log n) n -1 grado n è il numero dei peer;

  33. Grafico funzione binomiale y 1 n/2 n-1 x

  34. Come scegliere l e k? Supponiamo di avere un limite sulla somma di grado e diametro Es l+k = 16 Quali sono i valori di l e k ottimali? l=k è la scelta migliore

  35. Alcune osservazioni E’ possibile fare meglio di Chord, si può arrivare a (0.72021 log n, 0.72021 log n) • Chord è asintoticamente ottimo • Uniforme • Facili da implementare e da analizzare; • Algoritmo di routing semplice (greedy); • Non c’è congestione sui nodi; • Fast bootstrap: • Routing locale; • GAP • Chord (log n, log n) • LB (½ log n, ½ log n)

  36. Ricapitolando…. Sistemi P2P puri Sistemi Uniformi Sistemi Non uniformi Koorde Neighbor of Neighbor routing (NON) Abbiamo detto abbastanza

More Related