1 / 24

Square Roots/Rational Numbers

Square Roots/Rational Numbers. 1-5. 1-4. Square Roots and Real Numbers. Powers and Exponents. Holt Algebra 1. Holt Algebra 1. Warm Up. Lesson Presentation. Lesson Quiz. 2 5. 5 9. 5 6. 3 8. 5. –1. Warm Up Simplify each expression. 1. 6 2. 121. 2. 11 2. 36. 25 36. 81.

aran
Download Presentation

Square Roots/Rational Numbers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Square Roots/Rational Numbers

  2. 1-5 1-4 Square Roots and Real Numbers Powers and Exponents Holt Algebra 1 Holt Algebra 1 Warm Up Lesson Presentation Lesson Quiz

  3. 2 5 5 9 5 6 3 8 5 –1 Warm Up Simplify each expression. 1. 62 121 2. 112 36 25 36 81 4. 3. (–9)(–9) Write each fraction as a decimal. 0.4 5. 6. 0.5 –1.83 7. 5.375 8.

  4. Objectives Evaluate expressions containing square roots. Classify numbers within the real number system.

  5. Vocabulary square root terminating decimal perfect square repeating decimal real numbers irrational numbers natural numbers whole numbers integers rational numbers

  6. A number that is multiplied by itself to form a product is called a square root of that product. The operations of squaring and finding a square root are inverse operations. The radical symbol , is used to represent square roots. Positive real numbers have two square roots. Positive square root of 16 =4 4  4 = 42= 16 = –4 – (–4)(–4) = (–4)2= 16 Negative square root of 16

  7. The nonnegative square root is represented by . The negative square root is represented by – . A perfect square is a number whose positive square root is a whole number. Some examples of perfect squares are shown in the table. 0 1 4 9 16 25 36 49 64 81 100 02 12 22 32 42 52 62 72 82 92 102

  8. Reading Math The expression does not represent a real number because there is no real number that can be multiplied by itself to form a product of –36.

  9. A. = 4 B. = –3 Example 1: Finding Square Roots of Perfect Squares Find each square root. Think: What number squared equals 16? 42 = 16 Positive square root positive 4. Think: What is the opposite of the square root of 9? 32 = 9 Negative square root negative 3.

  10. 25 81 Think: What number squared equals ? 5 9 Positive square root positive . Example 1C: Finding Square Roots of Perfect Squares Find the square root.

  11. 1a. Positive square root positive 2. 1b. = 2 Negative square root negative 5. Check It Out! Example 1 Find the square root. Think: What number squared equals 4? 22 = 4 52 = 25 Think: What is the opposite of the square root of 25?

  12. The square roots of many numbers like , are not whole numbers. A calculator can approximate the value of as 3.872983346... Without a calculator, you can use square roots of perfect squares to help estimate the square roots of other numbers.

  13. 1 Understand the problem Example 2: Problem-Solving Application As part of her art project, Shonda will need to make a square covered in glitter. Her tube of glitter covers 13 square inches. What is the greatest side length Shonda’s square can have? The answer will be the side length of the square. List the important information: • The tube of glitter can cover an area of 13 square inches.

  14. Make a Plan The side length of the square is because = 13.  Because 13 is not a perfect square, is not a whole number. Estimate to the nearest tenth. Find the two whole numbers that is between. Because 13 is between the perfect squares 0 and 16. is between and , or between 3 and 4. 2 Example 2 Continued

  15. Because 13 is closer to 16 than to 9, is closer to 4 than to 3. 3 4 You can use a guess-and-check method to estimate . Example 2 Continued

  16. 3 Solve is greater than 3.6. is less than 3.7. Because 13 is closer to 12.96 than to 13.69, is closer to 3.6 than to 3.7.  3.6 Example 2 Continued Guess 3.6: 3.62 = 12.96 too low Guess 3.7: 3.72 = 13.69 too high 3.6 3.7 4 3

  17. 4 Look Back Example 2 Continued A square with a side length of 3.6 inches would have an area of 12.96 square inches. Because 12.96 is close to 13, 3.6 inches is a reasonable estimate.

  18. Use a guess and check method to estimate . is greater than 6.1. is less than 6.2. Check It Out! Example 2 What if…? Nancy decides to buy more wildflower seeds and now has enough to cover 38 ft2. What is the side length of a square garden with an area of 38 ft2? Guess 6.1 6.12 = 37.21 too low Guess 6.2 6.22 = 38.44 too high A square garden with a side length of 6.2 ft would have an area of 38.44 ft2. 38.44 ft is close to 38, so 6.2 is a reasonable answer.

  19. All numbers that can be represented on a number line are called real numbers and can be classified according to their characteristics.

  20. Rational numbers can be expressed in the form , where a and b are both integers and b ≠ 0: , , . 1 2 a b 7 1 9 10 Natural numbersare the counting numbers: 1, 2, 3, … Whole numbers are the natural numbers and zero: 0, 1, 2, 3, … Integers are whole numbers and their opposites: –3, –2, –1, 0, 1, 2, 3, …

  21. Repeating decimalsare rational numbers in decimal form that have a block of one or more digits that repeat continuously: 1.3, 0.6, 2.14 Irrational numbers cannot be expressed in the form . They include square roots of whole numbers that are not perfect squares and nonterminating decimals that do not repeat: , ,  a b Terminating decimals are rational numbers in decimal form that have a finite number of digits: 1.5, 2.75, 4.0

  22. Example 3: Classifying Real Numbers Write all classifications that apply to each Real number. A. –32 32 can be written as a fraction and a decimal. 32 1 –32 = – = –32.0 rational number, integer, terminating decimal B. 5 5 can be written as a fraction and a decimal. 5 1 5 = = 5.0 rational number, integer, whole number, natural number, terminating decimal

  23. 7 can be written as a repeating decimal. 4 9 3a. 7 67  9 = 7.444… = 7.4 49 12 1 –12 = – = –12.0 3c. = 3.16227766… Check It Out! Example 3 Write all classifications that apply to each real number. rational number, repeating decimal 3b. –12 32 can be written as a fraction and a decimal. rational number, terminating decimal, integer The digits continue with no pattern. irrational number

  24. 7. –3.89 Lesson Quiz Find each square root. 1 2 3 7 -8 3. 4. – 1. 12 2. 5. The area of a square piece of cloth is 68 in2. How long is each side of the piece of cloth? Round your answer to the nearest tenth of an inch. 8.2 in. Write all classifications that apply to each real number. rational, integer, whole number, natural number, terminating decimal 6. 1 rational, repeating decimal 8. irrational

More Related