250 likes | 353 Views
UNIVERSITY OF JOENSUU DEPARTMENT OF COMPUTER SCIENCE FINLAND. Reference line approach in vector data compression. Alexander Akimov, Alexander Kolesnikov and Pasi F ränti. Digital contours compression. Map. Digital curves. F ormat of the input data. … 151.540252685547 -24.045833587646
E N D
UNIVERSITY OF JOENSUU DEPARTMENT OF COMPUTER SCIENCE FINLAND Reference line approach in vector data compression Alexander Akimov, Alexander Kolesnikov and Pasi Fränti
Digital contours compression Map Digital curves
Format of the input data … 151.540252685547 -24.045833587646 151.531372070313-24.058473587036 151.537963867188-24.086318969727 151.565521240234-24.096805572510 151.614135742188-24.052780151367 151.616073608398-23.998264312744 151.639846801758 -23.977359771729 151.683868408203 -23.988887786865 151.788024902344 -24.098888397217 151.880798339844 -24.181110382080 151.906097412109 -24.194442749023 151.933441162109 -24.217914581299 … … 3615352.4004109581 6925890.7695743283 3615349.4965740540 6925888.6290830234 3615344.45610715596925889.3992598010 3615331.3723420152 6925890.7895789202 3615322.1988572506 6925894.3704008218 3615306.1865065964 6925915.6552863186 3615291.9890540070 6925941.0211085072 3615279.1197768194 6925959.4553396963 3615261.9772396428 6925983.6909024585 3615256.3345565684 6925997.4440592052 3615256.8212792310 6926008.4765914902 3615262.6289530387 6926012.7475718036 …
Multiresolution vector map compression Choose decoding accurancy ... ... Layer 1 . . . Layer K . . . . Low resolution . . Layer N . . . Average resolution Compressed file High resolution
Two level resolution vector map compression + = High resolution: Original data, Lossy compression Low resolution: Result of approximation of high resolution level. Lossless compression Two level resolution: Data is stored separetely, with ability of independent Extracting of each level
Vector map compression Restored curve Original curve
Coordinate transformation: DPCM approach xi = xi – Predictor(xi,xi-1) yi = yi – Predictor(yi, yi-1) Y Y X X
Optimal product scalar quantizer Mean square error E(M) of the 2-D variable =(x,y) Optimization problem:
The reference line approach Y Y’ X’ X Original coordinates Transformed coordinates
Predictor #1 Low resolution level High resolution level Current point Predicted point Point, participated in prediction ...
Predictor #2 Low resolution level High resolution level Current point Predicted point Point, participated in prediction ...
Test data Test data #1: 365 curves 170,000 points 5,200 segments LR Test data #2: 3495 curves 221,000 points 13,250 segments
Tested algorithms DPCM-1:DPCM coordinate transformation for one level DPCM-2: DPCM coordinate transformation for two levels RL-1: Reference line approach with predictor # 1 RL-2: Reference line approach with predictor #2
Conclusions • The reference line approach allows to reduce distortion in lossy compression of two levels vector map • The necessarity of independent storage of different resolution levels lead us to increasing of compressed file size
Scalar quantization • Relatively fast optimal algorithm: O(MN) • Low storage space requirements
Cartesian product quantizer (1) • 2D data {xi, yi} is separeted into two 1D sets: {xi} and {yi}
Cartesian product quantizer (2) Mean square error E(M) of the 2-D variable =(x,y) Optimization problem:
Two level resolution vector map compression (1) • Two resolution layers • Low resolution layer is a result of rough • approximation of high resolution layer • Lossy compression of high resolution layer • Lossless compression of low resolution layer