1 / 26

Технологии локальных сетей на примере Ethernet

Технологии локальных сетей на примере Ethernet. Содержание. Технологии локальных сетей на примере Ethernet . Адресация . Спецификации физического уровня. Оборудование (концентраторы, коммутаторы ). Разделяемый и коммутируемый Ethernet. Технологии локальных сетей на примере Ethernet.

aretha
Download Presentation

Технологии локальных сетей на примере Ethernet

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Технологии локальных сетей на примере Ethernet

  2. Содержание Технологии локальных сетей на примере Ethernet. Адресация. Спецификации физического уровня. Оборудование (концентраторы, коммутаторы). Разделяемый и коммутируемый Ethernet

  3. Технологии локальных сетей на примере Ethernet Ethernet – самый распространенный стандарт ЛВС Самым распространенным стандартом локальных вычислительных сетей сегодня является Ethernet. Число сетей, функционирующих по протоколу этого стандарта, составляет на сегодняшний день порядка 5 миллионов, а число персональных компьютеров и серверов, на которых в качестве сетевого адаптера установлены карты Ethernet, подошло к отметке 50 миллионов (по данным 2012 года).

  4. Технологии локальных сетей на примере Ethernet Топология. Существует два варианта технологии Ethernet: Ethernet на разделяемой среде Коммутируемый вариант Ethernet.

  5. Ethernet на разделяемой среде В этом случае все узлы сети разделяют общую среду передачи данных, и сеть строится по топологии общей шины. На рис. 1 показан простейший вариант топологии — все компьютеры сети подключены к общей разделяемой среде, состоящей из одного сегмента коаксиального кабеля.

  6. Коммутируемый вариант Ethernet В том случае, когда сеть Ethernet не использует разделяемую среду, а строится на коммутаторах, объединенных дуплексными каналами связи, говорят о коммутируемом варианте Ethernet. Топология в этом случае является топологией дерева, то есть такой, при которой между двумя любыми узлами сеть существует ровно один путь. Пример топологии коммутируемой сети Ethernet показан на рис. 2

  7. Технология В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический кабель.

  8. Технология Преимущества использования витой пары по сравнению с коаксиальным кабелем: возможность работы в дуплексном режиме; низкая стоимость кабеля «витой пары»; более высокая надёжность сетей при неисправности в кабеле (соединение точка-точка (при соединении более 2 компьютеров требуется концентратор или коммутатор, которые обеспечивают работу остальной части сети): обрыв кабеля лишает связи два узла. В коаксиале используется топология «шина», обрыв кабеля разбивает сегмент на 2 половины), и обе половины не работают из-за отсутствия нагрузочных резисторов (терминаторов) (они должны быть на обоих концах кабеля), хотя применение концентраторов или коммутаторов на коаксиале полностью решало эту проблему; минимально допустимый радиус изгиба меньше; большая помехоустойчивость из-за использования дифференциального сигнала; возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);

  9. Технология Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

  10. Формат кадра Существует несколько форматов Ethernet-кадра. Наиболее распространенный формат кадра Ethernet II

  11. MAC-адреса При проектировании стандарта Ethernet было предусмотрено, что каждая сетевая карта (равно как и встроенный сетевой интерфейс) должна иметь уникальный шестибайтный номер (MAC-адрес), прошитый в ней при изготовлении. Этот номер используется для идентификации отправителя и получателя кадра, и предполагается, что при появлении в сети нового компьютера (или другого устройства, способного работать в сети) сетевому администратору не придётся настраивать MAC-адрес.

  12. MAC-адреса Уникальность MAC-адресов достигается тем, что каждый производитель получает в координирующем комитете IEEE Registration Authority диапазон из шестнадцати миллионов (224) адресов, и по мере исчерпания выделенных адресов может запросить новый диапазон. Поэтому по трём старшим байтам MAC-адреса можно определить производителя. Существуют таблицы, позволяющие определить производителя по MAC-адресу; в частности, они включены в программы типа arpalert.

  13. MAC-адреса MAC-адрес считывается один раз из ПЗУ при инициализации сетевой карты, в дальнейшем все пакеты генерируются операционной системой. Все современные операционные системы позволяют поменять его. Для Windows начиная как минимум с Windows 98 он менялся в реестре. Некоторые драйвера сетевых карт давали возможность изменить его в настройках, но смена работает абсолютно для любых карт.

  14. MAC-адреса Некоторое время назад, когда драйверы сетевых карт не давали возможность изменить свой MAC-адрес, а альтернативные возможности не были слишком известны, некоторые провайдеры Internet использовали его для идентификации машины в сети при учёте трафика. Программы из Microsoft Office, начиная с версии Office 97, записывали MAC-адрес сетевой платы в редактируемый документ в качестве составляющей уникального GUID-идентификатора.[3]. MAC адрес роутера передавался Mail.Ru агентом на свой сервер открытым текстом при логине.

  15. Разновидности Ethernet Ранние модификации Ethernet 10 Мбит/с Ethernet Быстрый Ethernet (Fast Ethernet, 100 Мбит/с) Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с) 10-гигабитный Ethernet (Ethernet 10G, 10 Гбит/с) 40-гигабитный и 100-гигабитный Ethernet Перспективы

  16. Ранние модификации Ethernet Xerox Ethernet — оригинальная технология, скорость 3 Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение. 1BROAD36 — широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель. 1BASE5 — также известный, как StarLAN, стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

  17. 10 Мбит/с Ethernet 10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») — первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. Следуя раннему стандарту IEEE использует коаксиальный кабель с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров. 10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») — используется кабель RG-58, с максимальной длиной сегмента 185 метров, компьютеры присоединялись один к другому, для подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом конце. Многие годы этот стандарт был основным для технологии Ethernet. StarLAN 10 — Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с. В дальнейшем эволюционировал в стандарт 10BASE-T. Несмотря на то, что теоретически возможно подключение к одному кабелю (сегменту) витой пары более чем двух устройств, работающих в симплексном режиме, такая схема никогда не применяется для Ethernet, в отличие от работы с коаксиальным кабелем. Поэтому все сети на витой паре используют топологию «звезда», в то время как сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по витой паре встроены в каждое устройство, и применять дополнительные внешние терминаторы в линии не нужно. 10BASE-T, IEEE 802.3i — для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров. FOIRL — (акроним от англ.Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1 км. 10BASE-F, IEEE 802.3j — Основной термин для обозначения семейства 10 Мбит/с ethernet-стандартов, использующих оптический кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение. 10BASE-FL (Fiber Link) — Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км. 10BASE-FB (Fiber Backbone) — Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль. 10BASE-FP (Fiber Passive) — Топология «пассивная звезда», в которой не нужны повторители — никогда не применялся.

  18. Быстрый Ethernet (Fast Ethernet, 100 Мбит/с) 100BASE-T — общий термин для обозначения стандартов, использующих в качестве среды передачи данных витую пару. Длина сегмента до 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2. 100BASE-TX, IEEE 802.3u — развитие стандарта 10BASE-T для использования в сетях топологии «звезда». Задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м. 100BASE-T4 — стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Практически не используется. 100BASE-T2 — стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направлениях по каждой паре. Скорость передачи в одном направлении — 50 Мбит/с. Практически не используется. 100BASE-FX — стандарт, использующий многомодовое волокно. Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2 километра в полном дуплексе. 100BASE-SX — стандарт, использующий многомодовое волокно. Максимальная длина ограничена только величиной затухания в оптическом кабеле и мощностью передатчиков, по разным материалам от 2х до 10 километров. 100BASE-FX WDM — стандарт, использующий одномодовое волокно. Максимальная длина ограничена только величиной затухания в волоконно-оптическом кабеле и мощностью передатчиков. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны) либо одной латинской буквой A(1310) или B(1550). В паре могут работать только парные интерфейсы: с одной стороны передатчик на 1310 нм, а с другой — на 1550 нм.

  19. Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с) 1000BASE-T, IEEE 802.3ab — стандарт, использующий витую пару категорий 5e. В передаче данных участвуют 4 пары. Скорость передачи данных — 500 Мбит/с по одной паре. Используется метод кодирования PAM5, частота основной гармоники 62,5 МГц. Расстояние до 100 метров 1000BASE-TX был создан Ассоциацией Телекоммуникационной Промышленности (англ. Telecommunications Industry Association, TIA) и опубликован в марте 2001 года как «Спецификация физического уровня дуплексного Ethernet 1000 Мб/с (1000BASE-TX) симметричных кабельных систем категории 6 (ANSI/TIA/EIA-854-2001)» (англ. «A Full Duplex Ethernet Specification for 1000 Mbit/s (1000BASE-TX) Operating Over Category 6 Balanced Twisted-Pair Cabling (ANSI/TIA/EIA-854-2001)»). Стандарт, использует раздельную приёмо-передачу (по одной паре в каждом направлении), что существенно упрощает конструкцию приёмопередающих устройств. Ещё одним существенным отличием 1000BASE-TX является отсутствие схемы цифровой компенсации наводок и возвратных помех, в результате чего сложность, уровень энергопотребления и цена процессоров становится ниже, чем у процессоров стандарта 1000BASE-T. Но, как следствие, для стабильной работы по такой технологии требуется кабельная система высокого качества, поэтому 1000BASE-TX может использовать только кабель 6 категории. На основе данного стандарта создано большое количество продуктов для промышленных сетей. 1000BASE-X — общий термин для обозначения стандартов со сменными приёмопередатчиками GBIC или SFP. 1000BASE-SX, IEEE 802.3z — стандарт, использующий многомодовое волокно в первом окне прозрачности с длиной волны равной 850 нм. Дальность прохождения сигнала составляет до 550 метров. 1000BASE-LX, IEEE 802.3z — стандарт, использующий одномодовое или многомодовое оптическое волокно во втором окне прозрачности с длиной волны равной 1310 нм. Дальность прохождения сигнала зависит только от типа используемых приемопередатчиков и, как правило, составляет для одномодового оптического волокна до 5 км и для многомодового оптического волокна до 550 метров. 1000BASE-CX — стандарт для коротких расстояний (до 25 метров), использующий экранированную витую пару, используются 2 пары из 4. Заменён стандартом 1000BASE-T и сейчас не используется. 1000BASE-LH (Long Haul) — стандарт, использующий одномодовое волокно. Дальность прохождения сигнала без повторителя до 100 километров[4].

  20. 10-гигабитный Ethernet (Ethernet 10G, 10 Гбит/с) Новый стандарт 10-гигабитного Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3. 10GBASE-CX4 — технология 10-гигабитного Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand. 10GBASE-SR — технология 10-гигабитного Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое волокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового волокна (2000 МГц/км). 10GBASE-LX4 — использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому волокну. Также поддерживает расстояния до 10 километров при использовании одномодового волокна. 10GBASE-LR и 10GBASE-ER — эти стандарты поддерживают расстояния до 10 и 40 километров соответственно. 10GBASE-SW, 10GBASE-LW и 10GBASE-EW — эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи. 10GBASE-T, IEEE 802.3an-2006 — принят в июне 2006 года после 4 лет разработки. Использует витую пару категории 6 (максимальное расстояние 55 метров)[5] и 6а (максимальное расстояние 100 метров)[5]. 10GBASE-KR — технология 10-гигабитного Ethernet для кросс-плат (backplane/midplane) модульных коммутаторов/маршрутизаторов и серверов (Modular/Blade). Компания Harting заявила о создании первого в мире 10-гигабитного соединителя RJ-45, не требующего инструментов для монтажа — HARTING RJ Industrial 10G[6][7].

  21. 40-гигабитный и 100-гигабитный Ethernet Согласно наблюдениям Группы 802.3ba[8], требования к полосе пропускания для вычислительных задач и приложений ядра сети растут с разными скоростями, что определяет необходимость двух соответствующих стандартов для следующих поколений Ethernet — 40 Gigabit Ethernet (или 40GbE) и 100 Gigabit Ethernet (или 100GbE). В настоящее время серверы, высокопроизводительные вычислительные кластеры, блейд-системы, SAN и NAS используют технологии 1GbE и 10GbE, при этом в 2007 и 2008 гг. был отмечен значительный рост последней.

  22. Перспективы О Terabit Ethernet (так упрощенно называют технологию Ethernet со скоростью передачи 1 Тбит/с) стало известно в 2008 году из заявления создателя Ethernet Боба Меткалфа на конференции OFC[9] который предположил, что технология будет разработана к 2015 году,

  23. Оборудование (концентраторы, коммутаторы). 1.Сетевой концентратор. 2. Сетевой коммутатор.

  24. Сетевой концентратор. По сравнению с коммутаторами, концентраторы – самые дешёвые, самые простые устройства в сети. Все данные, которые поступают в один порт концентратора, пересылаются на все другие порты. Следовательно, все компьютеры, подсоединённые к одному концентратору, «видят» в сети друг друга. Концентратор не обращает никакого внимания на передаваемые данные, он просто посылает их на другие порты. Преимущество концентратора в том, что он довольно дешёвый и предлагает быстрый и простой способ объединить компьютеры в маленькую сеть.

  25. Сетевой коммутатор Работа коммутатора во многом схожа с предназначением концентратора - но он делает это более эффективно. Каждый пакет данных (фрагмент Ethernet), передаваемый в сети, имеет MAC-адреса источника и адресата. Коммутатор способен «запоминать» адрес каждого компьютера, подключённого к его портам и действовать как регулировщик - только передавать данные на компьютер адресата и ни на какие другие. Это может оказать существенный положительный эффект на производительность всей сети, потому что отсутствуют ненужные передачи пакетов и освобождается сетевая пропускная способность. Коммутатор можно представить как центральный компонент одной сети. Он используется для связи устройств в сети и доставки фрагментов уровня 2 (OSI model). Коммутатор отличается от концентратора тем, что он не дублирует фрагменты на все другие устройства - он создаёт прямое соединение между передающими и принимающими устройствами.

  26. Вопросы и ответы

More Related