1 / 30

Accelerators

Accelerators. Mark Mandelkern. For producing beams of energetic particles. Protons, antiprotons and light ions heavy ions electrons and positrons (secondary) neutral beams (photons, neutrons, neutrinos). Some accelerator applications. particle and nuclear physics synchrotron radiation

aria
Download Presentation

Accelerators

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Accelerators Mark Mandelkern

  2. For producing beams of energetic particles • Protons, antiprotons and light ions • heavy ions • electrons and positrons • (secondary) neutral beams (photons, neutrons, neutrinos)

  3. Some accelerator applications • particle and nuclear physics • synchrotron radiation • materials science, biology • medical radiation therapy • isotope production • plasma heating • high energy X-ray production • non-destructive testing, food sterilization

  4. Accelerators in particle physics • probe small-scale structure • l = h/p=197 10-13 cm /p(MeV/c) • electrons, positrons • Pointlike (also neutrinos), no strong interactions • costly to accelerate (synchrotron radiation) • protons and antiprotons • complicated structures make interpretation difficult • easier to accelerate to ultra-high energies

  5. Accelerator types • electrostatic • battery, lightning, van de Graff, Pellatron: to about 30 MeV; for nuclear physics and isotope production • cascade • Cockcroft-Walton: to several MeV; cheap; for X-ray sources and injectors • Linear • RFQ • drift-tube(Wideroe, Alvarez):preaccelerators, LAMPF • Waveguide:electrons only(SLAC, NLC)

  6. Pelletron

  7. Van de Graff

  8. Cockcroft-Walton principle

  9. ISIS Cockcroft-Walton

  10. Wideroe Linac

  11. Alvarez Linac

  12. Radiofrequency Quadrupole RFQ

  13. SLAC Linac

  14. SLAC Waveguide

  15. Phase Stability

  16. Circular Accelerators • betatron • electrons only, cheap, portable, to ~500 MeV • cyclotron • Protons to ~500 MeV (TRIUMF, PSI) • Synchrotron • 100 GeV electrons (LEP) • 1 TeV protons and antiprotons (FNAL) • 7 TeV protons (LHC)

  17. Cyclotron animation

  18. First cyclotron

  19. TRIUMF

  20. Strong focusing principle

  21. Strong focusing animation

  22. HEP Accelerator Systems • FNAL Tevatron(1 TeV p) • CW(750 keV):Linac:Booster(8 GeV):Main Injector(120 GeV): Tevatron Ring • CERN SPS/LEP(400 GeV p/100 GeV e+-) • RFQ (750 keV):Linac (50 MeV):PS(28 GeV):SPS:LEP

  23. FNAL Tevatron Tunnel

  24. Synchrotron radiation W=(e2/3e0)(g4b3/R) loss per turn Ec=(hc/2p)(3g3/2R) peak energy g=E/mc2 LEP: 100 GeV/beam: R=4.9km W~3 GeV Ec~ 90 keV(hard X-ray) 288 SC RF cavities Tevatron: E=1 TeV R=1.1km W~ 10 eV Ec~0.4 eV LHC: E=7 TeV R=4.9 kmW~5 keV, Ec~27 eV

  25. Colliders • Circular • e- e+ below 10 GeV (BEPS/PEP-2/KEKB) • 1 TeV p/1 TeV pbar (Tevatron-FNAL), • 27.5 GeV e-/920 GeV p (HERA-DESY) • 105 GeV e-/105 GeV e+ (LEP-CERN) • 7 TeV p/7TeV p (LHC-CERN) • Linear • 50 GeV e-/50 GeV e+ (SLC-SLAC) • ~1 TeV e-/~1 TeV e+ (NLC-?)

  26. Why Colliders? • Fixed target (pp) • Ecm2=mb2+mt2+2Ebmt • Eb=1 TeV mb=mt=0.938 GeV Ecm=43.3 GeV • Symmetrical Collider • Ecm=Eb+Et • Eb=Et= 1 TeV Ecm=2 TeV

  27. How Colliders? Event Rate = Ls L=f n1n2/(4psxsy) n1 n2 particles per bunch sx,sy rms horizontal (vertical) beam profile Thus intense bunched beams with tiny beam spots at the interaction points

  28. LEP

  29. LHC

  30. SLC/NLC

More Related