370 likes | 917 Views
Accelerators. Mark Mandelkern. For producing beams of energetic particles. Protons, antiprotons and light ions heavy ions electrons and positrons (secondary) neutral beams (photons, neutrons, neutrinos). Some accelerator applications. particle and nuclear physics synchrotron radiation
E N D
Accelerators Mark Mandelkern
For producing beams of energetic particles • Protons, antiprotons and light ions • heavy ions • electrons and positrons • (secondary) neutral beams (photons, neutrons, neutrinos)
Some accelerator applications • particle and nuclear physics • synchrotron radiation • materials science, biology • medical radiation therapy • isotope production • plasma heating • high energy X-ray production • non-destructive testing, food sterilization
Accelerators in particle physics • probe small-scale structure • l = h/p=197 10-13 cm /p(MeV/c) • electrons, positrons • Pointlike (also neutrinos), no strong interactions • costly to accelerate (synchrotron radiation) • protons and antiprotons • complicated structures make interpretation difficult • easier to accelerate to ultra-high energies
Accelerator types • electrostatic • battery, lightning, van de Graff, Pellatron: to about 30 MeV; for nuclear physics and isotope production • cascade • Cockcroft-Walton: to several MeV; cheap; for X-ray sources and injectors • Linear • RFQ • drift-tube(Wideroe, Alvarez):preaccelerators, LAMPF • Waveguide:electrons only(SLAC, NLC)
Circular Accelerators • betatron • electrons only, cheap, portable, to ~500 MeV • cyclotron • Protons to ~500 MeV (TRIUMF, PSI) • Synchrotron • 100 GeV electrons (LEP) • 1 TeV protons and antiprotons (FNAL) • 7 TeV protons (LHC)
HEP Accelerator Systems • FNAL Tevatron(1 TeV p) • CW(750 keV):Linac:Booster(8 GeV):Main Injector(120 GeV): Tevatron Ring • CERN SPS/LEP(400 GeV p/100 GeV e+-) • RFQ (750 keV):Linac (50 MeV):PS(28 GeV):SPS:LEP
Synchrotron radiation W=(e2/3e0)(g4b3/R) loss per turn Ec=(hc/2p)(3g3/2R) peak energy g=E/mc2 LEP: 100 GeV/beam: R=4.9km W~3 GeV Ec~ 90 keV(hard X-ray) 288 SC RF cavities Tevatron: E=1 TeV R=1.1km W~ 10 eV Ec~0.4 eV LHC: E=7 TeV R=4.9 kmW~5 keV, Ec~27 eV
Colliders • Circular • e- e+ below 10 GeV (BEPS/PEP-2/KEKB) • 1 TeV p/1 TeV pbar (Tevatron-FNAL), • 27.5 GeV e-/920 GeV p (HERA-DESY) • 105 GeV e-/105 GeV e+ (LEP-CERN) • 7 TeV p/7TeV p (LHC-CERN) • Linear • 50 GeV e-/50 GeV e+ (SLC-SLAC) • ~1 TeV e-/~1 TeV e+ (NLC-?)
Why Colliders? • Fixed target (pp) • Ecm2=mb2+mt2+2Ebmt • Eb=1 TeV mb=mt=0.938 GeV Ecm=43.3 GeV • Symmetrical Collider • Ecm=Eb+Et • Eb=Et= 1 TeV Ecm=2 TeV
How Colliders? Event Rate = Ls L=f n1n2/(4psxsy) n1 n2 particles per bunch sx,sy rms horizontal (vertical) beam profile Thus intense bunched beams with tiny beam spots at the interaction points