160 likes | 245 Views
建設工 学科棟2号館の耐震診断. 基盤構造研究室(担当茂木). 10TC005 新田裕 恭, 10TC010 内海満希, 10TC040 田中優希. 構造物の耐震診断. ・公共建造物の安全性についての興味 ・昨今の地震に建設棟は耐えられるのか 埼玉大学建設工学科2号棟の耐震診断 ( 1次診断、2次診断 ). 一次診断. 各階の桁行き方向、梁間方向についての耐震性 Isを求める。 Is= Eo×S d ×T 基準値 0.6 以上だとOK! ( Eo : 保有性能基本指標、 Sd :形状指標、T:経年指標 )
E N D
建設工学科棟2号館の耐震診断 基盤構造研究室(担当茂木) 10TC005新田裕恭,10TC010内海満希,10TC040田中優希
構造物の耐震診断 ・公共建造物の安全性についての興味 ・昨今の地震に建設棟は耐えられるのか 埼玉大学建設工学科2号棟の耐震診断 (1次診断、2次診断)
一次診断 • 各階の桁行き方向、梁間方向についての耐震性Isを求める。 Is=Eo×Sd×T 基準値0.6以上だとOK! (Eo:保有性能基本指標、Sd:形状指標、T:経年指標) ・Eo=(n+1/n+i)×(Cw+α1・Cc)×Fw Cw:壁の強度指標 α:係数 Cc:柱の強度指標 Fw:壁の靱性指標 ・Sd(形状指標)=1 ・T(30年経過している建物より)=0.8
強度指標の計算 Cw=(w1・Aw1+ w2・Aw2+ w3・Aw3)・βc/ΣW c=√(Fc/20) Cc=( ・Ac/ΣW)× c
1次診断 まとめ • 4階のIs値 • (桁行き方向)Is=2.02>0.6(基準値) • (梁間方向)Is=3.08>0.6 • よって各方向とも安全である • 1階のIs値 • (桁行き方向)Is=0.88>0.6(基準値) • (梁間方向)Is=0.79>0.6 • よって各方向とも安全である
2次診断とは • 2次診断 • C値とF値を部材の配筋などに考慮し、終局耐力Quと終局層変形角Ruをより正確に評価しE0を求める • 2次診断と3次診断の違い • 2次診断:スラブは壊れないと仮定 • 3次診断:スラブが壊れる可能性を考慮
F値と層変形角 層変形角 層変形角
せん断壁 C=0.567 F=1.0 4階 梁間方向 せん断壁 C=0.506 F=1.0 せん断壁 C=0.543 F=1.0 せん断壁 C=0.567 F=1.0 せん断壁 C=0.567 F=1.0 曲げ柱 C=0.0767 F=2.076 曲げ柱 C=0.0767 F=2.076 せん断壁 C=0.705 F=1.0 せん断壁 C=0.701 F=1.0 曲げ柱 C=0.0767 F=2.076 曲げ柱 C=0.0767 F=2.076 せん断壁 C=0.700 F=1.0
2次診断の結果とまとめ C=ΣQ/ΣW =3.164 5.062 C=5.062 曲げ柱の 終局変形角 0.317 壁の 終局変形角 F 1.0 2.467 1/R 1/250 1/58
2次診断の結果とまとめ • Is=E0*S0*T=3.164*1.0*0.8=2.531 • 1次診断の数値を下回り、より安全に考慮した設計基準となった
まとめ • Is値について詳しく研究していく中で、RC構造物について耐震基準に何が寄与しているかを理解することができた。 • 自分たちが普段利用している建設棟の安全性を自分で導くことができ、充実した研究となった。