1 / 48

循证医学中的常用统计指标

循证医学中的常用统计指标. 寇长贵 流行病与卫生统计学教研室. 主要内容. 概述 分类资料的指标 数值资料的指标 . 本 ppt 主要以四川大学华西医院刘关键教授的课件为参考。. 概述 — 可信区间. 数据资料可分为数值资料(计量)和分类资料(计数和等级)两大类。统计指标因而也分为数值资料指标与分类资料指标两类。 统计指标可用于描述性的统计分析,也是反映数据基本特征的统计分析方法。并可使人们准确、全面地了解数据资料所包涵的信息,以便于在此基础上完成资料的进一步统计分析。. 概述 — 可信区间.

ariane
Download Presentation

循证医学中的常用统计指标

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 循证医学中的常用统计指标 寇长贵 流行病与卫生统计学教研室

  2. 主要内容 • 概述 • 分类资料的指标 • 数值资料的指标 • 本ppt 主要以四川大学华西医院刘关键教授的课件为参考。

  3. 概述—可信区间 • 数据资料可分为数值资料(计量)和分类资料(计数和等级)两大类。统计指标因而也分为数值资料指标与分类资料指标两类。 • 统计指标可用于描述性的统计分析,也是反映数据基本特征的统计分析方法。并可使人们准确、全面地了解数据资料所包涵的信息,以便于在此基础上完成资料的进一步统计分析。

  4. 概述—可信区间 • 可信区间(confidence interval,CI)是循证医学中常用的统计指标之一。 • 可信区间主要用于估计总体参数,从获取的样本数据资料估计某个指标的总体值(参数)。如:率的可信区间估计总体率,均数的可信区间估计总体均数。

  5. 概述—可信区间 • 此外,可信区间还可用于假设检验,尤其是试验组与对照组某指标差值或比值的可信区间,在循证医学中更为常用。 • 通常,试验组与对照组某指标差值或比值的95%可信区间与为0.05的假设检验等价,99%的CI与为0.01的假设检验等价。

  6. 概述—可信区间 • 常用的可信区间有:率的可信区间、两率差值的可信区间、均数的可信区间、两均数差值的可信区间、相对危险度可信区间等。 • 循证医学中常用的是率的可信区间、 RR或OR的可信区间、均数的可信区间、两均数差值的可信区间等。

  7. 分类资料的指标 • 在循证医学的研究与实践中,除了有效率、死亡率、患病率、发病率等常用率的指标外,相对危险度(RR)、比值比(OR)及由此导出的其他指标也是循证医学中富有特色的指标。 • 目前,在循证医学中分类资料常用的描述指标主要有EER、CER、OR、RR、RRR、ARR、NNT等。

  8. 1、ERR与CER • 循证医学中预防和治疗性试验中,率可细分为EER和CER两类。 • EER即试验组中某事件的发生率(experimental event rate,EER),如对某病采用某些防治措施后该疾病的发生率。 • CER即对照组中某事件的发生率(control event rate,CER),如对某病不采取防治措施的发生率。

  9. 2. RD(率差)及可信区间 • 两个发生率的差即为率差,也称危险差(rate difference,risk difference,RD),如,试验组发生率(EER)与对照组发生率(CER)的差,其大小可反映试验效应的大小。 • 两率差的可信区间由下式计算: |p1-p2|±u SE(p1-p2) = (RD-u SE(p1-p2),RD+u SE(p1-p2))

  10. 2. RD(率差)及可信区间 • 两率差为0时,两组的某事件发生率没有差别。因而两率差的可信区间不包含0(上下限均大于0或上下限均小于0),则两个率有差别;反之,两率差的可信区间包含0,则无统计学意义。

  11. 2. RD(率差)及可信区间 阿斯匹林治疗心肌梗死的效果

  12. 2. RD(率差)及可信区间 阿斯匹林治疗心肌梗死的效果EER= 15/125 =12%,CER =30/120 =25%,两率差的标准误:

  13. 2. RD(率差)及可信区间 • 该试验两率差(RD)的可信区间为: RD±u SE(p1-p2) =(0.12-0.25)±1.96×0.049= (-0.23,-0.03) • 该例两率差的可信区间为(-0.23,-0.03),上下限均小于0(不包含0),两率有差别。可认为阿斯匹林可降低心肌梗死的病死率。

  14. 3.RR及可信区间 • 相对危险度RR(relative risk,RR)是前瞻性研究中较常用的指标,它是试验组某事件发生率p1与对照组(或低暴露)的发生率p0之比,用于说明前者是后者的多少倍,常用来表示试验因素与疾病联系的强度及其在病因学上的意义大小。 其计算方法为: • RR=P1/P0=EER/CER

  15. 3.RR及可信区间 • 当RR=1时,可认为试验因素与疾病无关; • 当RR>1时,可认为试验组发生率大于对照组; • 当RR<1时,可认为试验组发生率小于对照组。

  16. 3.RR及可信区间 • RR的可信区间,应采用自然对数进行计算,即应求RR的自然对数值ln(RR)和ln(RR)的标准误SE (lnRR),其计算公式如下:

  17. 3.RR及可信区间 • ln(RR)的1-可信区间为: ln(RR) ± u SE(lnRR) • RR的可信区间为: exp[ ln(RR) ±u SE(lnRR) ] • 由于RR=1时为试验因素与疾病无关,故其可信区间不包含1时为有统计学意义;反之,其可信区间包含1时为无统计学意义。

  18. 3.RR及可信区间 • 阿斯匹林治疗组的病死率p1=15/125;对照组的病死率p0=30/120,其RR和可信区间为:

  19. 3.RR及可信区间 • RR的95%可信区间为: exp[ ln(RR) ±1.96 SE(lnRR) ] = exp( -0.734 ± 1.96×0.289 ) = (0.272,0.846) • 该例RR的95%可信区间为0.272~0.846,使用阿斯匹林治疗的病人,其病死率小于对照组,可认为阿斯匹林可降低心肌梗死有效。

  20. 4.OR及可信区间 • odds1是病例组暴露率p1和非暴露率1- p1的比值,即odds1 = p1/(1-p1) , • odds0是对照组暴露率p0和非暴露率1- p0的比值,即odds0 = p0/(1-p0) , • 以上两个比值之比即为比值比(odds ratio,OR),又称机会比、优势比等。公式为: OR=ad/bc

  21. 4.OR及可信区间 • 当所研究疾病的发病率较低时,即a和c均较小时,OR近似于RR,故在回顾性研究中可用OR估计RR; • 由于前瞻性研究中,RR的可信区间与OR的可信区间很相近,因此,常用OR可信区间的计算来代替RR的可信区间的计算。 • OR值的解释与RR相同。

  22. 4.OR及可信区间 • OR的可信区间同样需要采用自然对数计算,其ln(OR)的标准误SE (lnOR)按下式计算:

  23. 4.OR及可信区间 • ln(OR)的可信区间为: ln(OR) ± u SE(lnOR) • OR的可信区间为: exp[ ln(OR) ±u SE(lnOR) ]

  24. 4.OR及可信区间

  25. 4.OR及可信区间 • OR的95%可信区间为: exp[ ln(OR) ±1.96SE(lnOR) ] = exp(-0.894±1.96×0.347) = (0.207,0.807) • 该例OR的95%可信区间为(0.207,0.807),可以认为阿斯匹林治疗心肌梗死有效。

  26. 5.RRR及可信区间 • RRR为相对危险度减少率 (relative risk reduction),其计算公式为: RRR=|CER-EER|/CER = 1-RR • RRR的可信区间可由1-RR计算得到。 • 如前例RR=0.48,其95%的可信区间为(0.272,0.846),其RRR=1-0.48=0.52,RRR的95%可信区间为(0.154,0.728)。

  27. 5.RRR及可信区间 • RRR反映了某试验因素使某结果的发生率增加或减少的相对量,但是,该指标无法衡量发生率增减的绝对量。 • 如:试验人群中某病的发生率EER=39%,而对照组人群的发生率CER=50%, RRR=(CER-EER)/CER =(50%-39%)/50%=22%。 • 但是,若在另一研究中,试验组的疾病发生率为0.39/10万,对照组的疾病发生率为0.50/10万,其RRR仍为22%。

  28. 6.RRI • RRI,相对危险度增加率(relative risk increase,RRI),试验组中某不利结果的发生率为EERb,对照组某不利结果的发生率为CERb,RRI可按下式计算: RRI = |EERb-CERb |/ CERb • 该指标可反映采用试验因素处理后,患者的不利结果增加的百分比。

  29. 7.RBI • RBI,相对获益增加率(relative benefit increase,RBI),试验组中某有益结果的发生率为EERg,对照组某有益结果的发生率为CERg,RBI可按下式计算: RBI=|EERg-CERg |/ CERg • 该指标可反映采用试验因素处理后,患者的有益结果增加的百分比。

  30. 8.ARR及可信区间 • 绝对危险度减少率 (absolute risk reduction,ARR),其计算公式为: ARR=|CER-EER| • ARR的可信区间为: ARR±uSE = (ARR-uSE ,ARR+uSE)

  31. 8.ARR及可信区间

  32. 8.ARR及可信区间 • 其95%的可信区间为: ARR±uSE= (ARR-uSE ,ARR+uSE) = (0.13-1.96×0.049,0.13+1.96×0.049) = (3.4%,22.6%) • 该治愈率的95%的可信区间为(3.4%,22.6%)。

  33. 9.ARI • 绝对危险度增加率(absolute risk increase,ARI),即试验组中某不利结果发生率EERb与对照组某不利结果发生率CERb的差值,不利结果(bad outcomes)如:死亡、复发、无效等,其计算公式为 : ARI =|EERb-CERb| • 该指标可反映采用试验因素处理后,患者的不利结果增加的绝对值。

  34. 10 .ABI • 绝对受益增加率(absolute benefit increase,ABI),即试验组中某有益结果发生率EERg与对照组某有益结果发生率CERg的差值,有益结果(good outcomes)如:治愈、显效、有效等,其计算公式为: ABI=|EERg-CERg| • 该指标可反映采用试验因素处理后,患者的有益结果增加的绝对值。

  35. 11.NNT、NNH及可信区间 • NNT(the number needed to treat)的临床含义为:对病人采用某种防治措施处理,得到一例有利结果需要防治的病例数(the number of patients who need to be treated to achieve one additional favorable outcome,NNT)。其计算公式为: NNT=1/|CER-EER|=1/ARR • 从公式可见,NNT的值越小,该防治效果就越好,其临床意义也就越大。

  36. 11.NNT、NNH及可信区间 • NNT的95%的可信区间,由于无法计算NNT的标准误,但NNT= 1/ARR,故NNT的95%的可信区间的计算可利用ARR的95%的可信区间来计算。 • NNT95%可信区间的下限: 1/ARR的上限值 • NNT95%可信区间的上限: 1/ARR的下限值 • 例如某试验的ARR的95%CI为3.4%~22.6%,其NNT的95%CI下限为:1/22.6%=4.4;上限为:1/3.4%=29.4,即4.4~29.4。

  37. 12.NNH • NNH的临床含义为:对病人采用某种防治措施处理,出现一例副作用需要处理的病例数(the number needed to harm one more patients from the therapy,NNH)。其计算式为: NNH = 1/ARI • 从公式可见,NNH的值越小,某治疗措施引起的副反应就越大。

  38. 13.LHH • LHH,防治性措施受益与危害的似然比(likelihood of being helped vs. harmed, LHH),其计算公式为: LHH=NNH/NNT • 该指标反映了防治措施给受试者带来的受益与危害的比例,LHH>1,利大于敝,反之,LHH<1时,敝大于利。

  39. 数值资料的指标 • WMD(加权均数差) • SMD(标准化均数差)

  40. 1. WMD • 加权均数差 • (WMD, Weighted Mean Difference) • 某个研究的两均数差d 可按下式计算:

  41. 1. WMD • 两均数差d­的方差Var(d),可按下式计算:

  42. 1. WMD • 从公式可见,加权均数差(Weighted Mean Difference, WMD) 即为两均数的差值。 • 该指标以试验原有的测量单位,真实地反映了试验效应,消除了绝对值大小对结果的影响,在实际应用时,该指标容易被理解和解释。

  43. 2. SMD • 标准化均数差 • (Standardised Mean Difference, SMD) • 某个研究的标准化均数差d,可按下式计算:

  44. 2. SMD • 标准化均数差d的方差Var(d),可按下式计算:

  45. 2. SMD • SMD可简单地理解为两均数的差值再除以合并标准差的商,它不仅消除了某研究的绝对值大小的影响,还消除了测量单位对结果的影响。因此,该指标尤其适用于单位不同或均数相差较大的数值资料分析。 • 但是,标准化均数差(SMD)是一个没有单位的值,因而,对SMD分析的结果解释要慎重。

  46. 结束语 • 成功之路在脚下延伸 • 科学需要铺垫与积累

More Related