630 likes | 1.08k Views
Experimental Animal Model s in Respiratory Diseases. Dr. Sibel Atış. Experimental Animal Model s in Respiratory Diseases. Why are men such rat?. Observation of functional and structural changes Ethiopathogenesis Defining of inflammatory processes
E N D
Experimental Animal Modelsin Respiratory Diseases Dr. Sibel Atış
Experimental Animal Modelsin Respiratory Diseases Why are men such rat?
Observation of functional and structural changes • Ethiopathogenesis • Defining of inflammatory processes • Observation of changes in airway behaviours • Assessment of a new molecul effects • Development of a treatment strategy In Respiratory Diseases;
Animal model selection Challenge system
Animal Model - Selection Criteria • Species • Pathogenesis • Endpoints of study • Manipulations required • Cost • Challenge System • Delivery of Agent • Challenge Dose • Strain or Form of Agent
Species • Pathogenesis • Endpoints of study • Manipulations required • Cost • Selection Criteria:
Selection of the Species - Sensitivity to Agent • Pathogenesis • Endpoints of study • Manipulations required • Cost
Selection of the Species • Pathogenesis -Similarity to Human Disease Process • Endpoints of study • Manipulations required • Cost
Asthma animal models: • Antigen induced asthma animal models; • Bronchial hyperreactivity, • Airway eosinophilic inflamation, • mukus hipersecretion, • high IgE levels
Asthma animal models: • In mouse models: additionally, active Th2 cell or dendritic cell infiltration
Asthma animal models: Spontanous asthma animal models: • “t bet” Knockout mice:
Asthma animal models: • Occupational asthma models: • Toluene diisocyanate • Trimellitic anhydride (TMA), respiratory sensitization, • 1-chloro-2,4- dinitrobenzene (DNCB), dermal sensitization, (Vanoirbeek JAJ, et al, J Allergy Clin Immunol 2006)
COPD animal models: • Methods: 1) Elastase or exogenous agents (chemicals/particuls) induced 2) Cigarette smoke induced 3) Genetic intervention
COPD animal models : • Produced by elastase or exogenous agents: • Porcine pancreatic elastase (PPE), papain and human neutrophil elastase:panasinary emphysema - secretory cell metaplasi, - pulmonary function impairment, - hipoxemia, - right ventricular hypertrophy
COPD animal models : Egzogen agents: • repeated endotoxin: neutrophil and active macrophage • Oxidants (Nitrogen dioxide): lung damage • Repeated nitrogen dioxide: focal emphysema • Osone: fibrosis • Cadmium chloride: emphysemawith primary fibrosis • Coul dust and silica: focal emphysema
COPD animal models : • Cigarette smoke induced COPD • Best COPD models in animals • Emphysema,small airway lesions and secretory cell metaplasi like as in humans • Similarities or differences between human and animals about cytokine profile, cell proliferation and apopitosis are little known.
COPD animal models : Important point in Cigarette smoke induced COPD models • need to time for emphysema lesions: It chages acording to; • Animal to animals • Exposure dose • Exposure methods (nasal or whole body) Min. 4 mounths (in some species 12 mounths ) b)Animal species • Dog: perfect emphysema • Guina pig: vasculary changes • Rat models: do not show this changes
COPD animal models : • Produced by Genetic intervention: - Knockout mice - Transgenic mice
Lung cancer models: Best models in mouse: 1) spontouneus models 2) produced by full carcinogens 3) produced by Cigarette smoke 4) Transgenic and Knockout models
Lung cancer models : • Morphologic, histopatholojic and molecular characteristics like as human adenocancer. • Models of nonsmall cell CA shows not metastase. • Models of small cell CA shows a lot of characteristics of human cancer (including metastase)
Lung cancer models : • The important point for clinical applications of this models: Need to be determine of their radiosensitivity and chemosensitivity
Tuberculosis models: • Robert Koch showed that M. tuberculosis inoculation induced lesions like human disease. • Infection has been determined with M. tuberculosis cultures in a variety of animals. • Pathological reactions: Different pattern in different animals. • Rabbit / Pulmonary Tubercles • Mouse and Guinea Pig Usually Other Forms
Pneumonia models: • Bacterial pneumonia models: • S. pneumoniae, • K. pneumoniae, • P. Aeruginosa induced pneumonia • Bacterial pneumonia 1)Intratracheal 2) Directly nasal route (pulmonary infection rate ~ %100) 3) Whole body: aerosol exposure to bacteria
Pneumonia models: • Viral pneumonia models: • Any animal model shows not fully clinical disease spectrum of human viral pneumonia (e.g. RSV ).
Interstitial pneumonitis/fibrosis models: • Any animal model shows not fully clinical characteristics or histopathology of human disease • Models result in general fibrosis in lung paranchima
İnterstitial pneumonitis/fibrosis models: • Pulmonary fibrosis models can be produced by several exogenous agents in several animal species. • Pulmonary fibrosis models produced by Bleomycine has been mostly used.
Selection of the Species • Pathogenesis • Endpoints of study • Manipulations required • Cost
Endpoints of study: • Survival / mortality • Pathogenesis/pathology • ClininicalObservation - Pneumonia - Respiratory and/or other symptoms (e.g. fever) • Clinical Biochemia (e.g. inflamation mediators) • Bacteriemia / Viremia • Functional / physiological assessment • Efficiency of a new molecul/ treatment agent • Vaccine efficiency
Selection of the Species • Pathogenesis • Endpoints of study • Manipulations required • Cost
Manipulations required: • Radiography • Larger Animal Model • Diagnostic procedures • Bronchoscopy, BAL,pulmonary catetherisation • Physiological Monitoring • Pulmonary function, electrophysiology • Exposure • Inhalation (Head-Only, Nose-Only, Whole-Body) • Others (Parenteral, Oral, intraperitoneal)
Selection of the Species • Pathogenesis • Endpoints of study • Manipulations required • Cost
Animal cost: • Rarely Unlimited Funds • Statistical Assessment Cannot Be Compromised • Cost Comparison • Monkeys ~ $3,500-$5,000 • Rabbits ~ $90-$100 • Guinea Pigs ~ $45-$55 • Rats ~ $25 • Mice ~ $5 • Genotypically Specialized Animals - Much More Expensive
Challenge system: • Challenge Dose • Delivery of Agent • IM, SQ, Oral, Nasal, Aerosol • Strain or Form of Agent • Different Infectivity characteristics and serotypes
Ajanın cinsi veya formu (Kullanılan ajanlar) • Sensitize edici ajanlar (antijenler, allerjenler v.s) • Gazlar; ozon, NO2, SO2 vb • Partiküller; PM, çevresel partiküller, karbon, DEP, nanopartiküller, asbest partikülleri vs • Sigara dumanı, ürünleri • Diğer toksik ajanlar • Mikrobiyal ajanlar • Lipopolisakkarit (selektif pulmoner nötrofiliye yolaçar) • Çeşitli kanserojenler
Animal Exposures Units For one animal For several animals
CONCLUSIONS • Solunum sistemi hastalıklarında; etyopatogenez ve yeni bir tedavi ajanının etkileri başta olmak üzere daha birçok özellik hakkında detaylı bir değerlendirme imkanı verdiği için in vivo hayvan modellerine gereksinim vardır. • Solunum sistemi hastalığı ile ilgili deneysel bir hayvan modeli oluştururken, bu modelin insanlardaki kliniğe en iyi şekilde uyarlanabilmesi açısından hayvan modelinin seçimi ve model oluşturmada seçilecek ajan oldukça önemlidir.
CONCLUSIONS • Hayvan modellerinin bir takım kısıtlılıklarının da olduğu unutulmamalıdır. • Spontan olarak solunumsal hastalık gelişen model oldukça azdır. • Hayvan modelleri ister istemez solunum sistemi hastalığının tam fenotipik özelliklerini göstermez. • Her bir hayvan türünün kendine göre zayıf ve güçlü yanları olup, araştırıcı bunlar arasından test edeceği hipotez açısından en uygun modeli seçebilmelidir.
Questions ???? Thank you… Doç.Dr. Sibel ATIŞ