150 likes | 361 Views
Parsing Combinators. Hongwei Xi Boston University. Calculator: grammar (I). expr ::= integer | (expr) | ~expr | expr + expr | expr – expr | expr * expr | expr / expr This grammar is ambiguous: For instance, the expression 1 + 2 / 3 has more than one parse trees.
E N D
Parsing Combinators Hongwei Xi Boston University BU CAS CS520
Calculator: grammar (I) • expr ::= integer | (expr) | ~expr | expr + expr | expr – expr | expr * expr | expr / expr • This grammar is ambiguous:For instance, the expression 1 + 2 / 3 has more than one parse trees. BU CAS CS520
Calculator: grammar (II) • expr ::= term | expr + term | expr – term • term ::= factor | term * factor | term / factor • factor ::= integer | (expr) | ~factor • We have now resolved ambiguity in the previous grammar BU CAS CS520
A Calculator: grammar (III) • expr ::= term expr’ • expr’ ::= /* empty */ | + term expr’ | – term expr’ • term ::= factor term’ • term’ ::= /* empty */ | * factor term’ | / factor term’ • factor ::= integer | (expr) | ~factor BU CAS CS520
Calculator: parsing and computing • fun expr () = $term && $expr’ wth (fn (t, k) => k(t))and expr’ () = PLUS >> $term && $expr’ wth (fn (t, k) => (fn t’ => k (t’ + t)) || MINUS >> $term && $expr’ wth (fn (t, k) => (fn t’ => k (t’ - t)) || succeed (fn t => t)… … BU CAS CS520
Parsing Combinators (I) • type pos = Pos.T • ‘t stream = (‘t, pos) Stream.T • (‘a, ‘t) Parser =pos * ‘t stream -> ‘a * pos * pos * ‘t stream • infix 4 >> << • infix 3 && • infix 2 -- ## • infix 2 wth suchthat return guard • infixr 1 || • exception Fail of pos BU CAS CS520
Parsing Combinators (II) • fun succeed x (pos, ts) = (x, pos, pos, ts) • fun fail (pos, ts) = raise (Fail pos) • fun done x (pos, ts) = if S.isEmpty ts then (x, pos, pos, ts) else fail (Pos.rightEdge pos, ts) • fun any (pos, ts) = if S.isEmpty ts then fail (pos, ts) else let val ((x, pos), ts) = Stream.uncons ts in (x, pos, pos, ts) end BU CAS CS520
Parsing Combinator: -- • fun (p -- q) (pos, ts) = let val (x, posx, pos, ts) = p (pos, ts) val (y, posy, pos, ts) = q x (pos, ts) in (y, Pos.union (posx, posy), pos, ts) end BU CAS CS520
Parsing Combinator: ## • fun (p ## q) (pos, ts) =p (pos, x)handle Fail err1 => q err1 (pos, ts) handle Fail err2 => raise (Fail (Pos.max (err1, err2))) BU CAS CS520
Parsing Combinators: && and || • fun p && q = p -- (fn x => q -- (fn y => succeed (x, y))) • fun p || q = p ## (fn _ => q) BU CAS CS520
Parsing Combinator: !! • fun !! p (pos, ts) =let val (x, posx, pos, ts) = p (pos, ts)in ((x, posx), posx, pos, ts)end BU CAS CS520
More Parsing Combinators • fun p wth f = p -- (succeed o f) • fun p suchthat g = p -- (fn x => if g x then succeed x else fail) • fun p return x = p -- (fn _ => succeed x) • fun p guard g = p ## (fn err => let val _ = g err in fail end) • fun satisfy g = any suchthat g • fun literal t = satisfy (fn t’ => t = t’) • fun opt p = p wth Some || succeed None • fun p << q = p -- (fn x => q return x) • fun p >> q = p -- (fn _ => q) • … … BU CAS CS520
A Parser for Simple Types (I) • signature PARSER = sig datatype tp = TpInt | TpBool TpFun of tp * tp val parseString: string -> tpend BU CAS CS520
A Parser for Simple Types (II) • structure Parser :> PARSER = struct … … val tpInt = Token.litWord “int” val tpBool = Token.litWord “bool” val LPAREN = Token.litWord “(“ val RPAREN = Token.litWord “)” val ARROW = Token.litWord “->” fun tp () = $tp0 && $tp’ wth (fn (t, k) => k(t)) and tp’ () = ARROW >> $tp wth fn t => (fn t’ => TpFun (t’, t)) || succeed (fn t => t) and tp0 () = tpInt return TpInt || tpBool return TpBool || LPAREN >> $tp << RPAREN … …end BU CAS CS520
Try it yourself! • A parser for untyped l-calculus implemented using parsing combinators can be found on the course’s homepage • Also, some helpful material can be found in Lawrence Paulson’s book on ML; or read a paper by Hutton • Try it yourself and ask questions! BU CAS CS520