1 / 15

Parsing Combinators

Parsing Combinators. Hongwei Xi Boston University. Calculator: grammar (I). expr ::= integer | (expr) | ~expr | expr + expr | expr – expr | expr * expr | expr / expr This grammar is ambiguous: For instance, the expression 1 + 2 / 3 has more than one parse trees.

aric
Download Presentation

Parsing Combinators

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Parsing Combinators Hongwei Xi Boston University BU CAS CS520

  2. Calculator: grammar (I) • expr ::= integer | (expr) | ~expr | expr + expr | expr – expr | expr * expr | expr / expr • This grammar is ambiguous:For instance, the expression 1 + 2 / 3 has more than one parse trees. BU CAS CS520

  3. Calculator: grammar (II) • expr ::= term | expr + term | expr – term • term ::= factor | term * factor | term / factor • factor ::= integer | (expr) | ~factor • We have now resolved ambiguity in the previous grammar BU CAS CS520

  4. A Calculator: grammar (III) • expr ::= term expr’ • expr’ ::= /* empty */ | + term expr’ | – term expr’ • term ::= factor term’ • term’ ::= /* empty */ | * factor term’ | / factor term’ • factor ::= integer | (expr) | ~factor BU CAS CS520

  5. Calculator: parsing and computing • fun expr () = $term && $expr’ wth (fn (t, k) => k(t))and expr’ () = PLUS >> $term && $expr’ wth (fn (t, k) => (fn t’ => k (t’ + t)) || MINUS >> $term && $expr’ wth (fn (t, k) => (fn t’ => k (t’ - t)) || succeed (fn t => t)… … BU CAS CS520

  6. Parsing Combinators (I) • type pos = Pos.T • ‘t stream = (‘t, pos) Stream.T • (‘a, ‘t) Parser =pos * ‘t stream -> ‘a * pos * pos * ‘t stream • infix 4 >> << • infix 3 && • infix 2 -- ## • infix 2 wth suchthat return guard • infixr 1 || • exception Fail of pos BU CAS CS520

  7. Parsing Combinators (II) • fun succeed x (pos, ts) = (x, pos, pos, ts) • fun fail (pos, ts) = raise (Fail pos) • fun done x (pos, ts) = if S.isEmpty ts then (x, pos, pos, ts) else fail (Pos.rightEdge pos, ts) • fun any (pos, ts) = if S.isEmpty ts then fail (pos, ts) else let val ((x, pos), ts) = Stream.uncons ts in (x, pos, pos, ts) end BU CAS CS520

  8. Parsing Combinator: -- • fun (p -- q) (pos, ts) = let val (x, posx, pos, ts) = p (pos, ts) val (y, posy, pos, ts) = q x (pos, ts) in (y, Pos.union (posx, posy), pos, ts) end BU CAS CS520

  9. Parsing Combinator: ## • fun (p ## q) (pos, ts) =p (pos, x)handle Fail err1 => q err1 (pos, ts) handle Fail err2 => raise (Fail (Pos.max (err1, err2))) BU CAS CS520

  10. Parsing Combinators: && and || • fun p && q = p -- (fn x => q -- (fn y => succeed (x, y))) • fun p || q = p ## (fn _ => q) BU CAS CS520

  11. Parsing Combinator: !! • fun !! p (pos, ts) =let val (x, posx, pos, ts) = p (pos, ts)in ((x, posx), posx, pos, ts)end BU CAS CS520

  12. More Parsing Combinators • fun p wth f = p -- (succeed o f) • fun p suchthat g = p -- (fn x => if g x then succeed x else fail) • fun p return x = p -- (fn _ => succeed x) • fun p guard g = p ## (fn err => let val _ = g err in fail end) • fun satisfy g = any suchthat g • fun literal t = satisfy (fn t’ => t = t’) • fun opt p = p wth Some || succeed None • fun p << q = p -- (fn x => q return x) • fun p >> q = p -- (fn _ => q) • … … BU CAS CS520

  13. A Parser for Simple Types (I) • signature PARSER = sig datatype tp = TpInt | TpBool TpFun of tp * tp val parseString: string -> tpend BU CAS CS520

  14. A Parser for Simple Types (II) • structure Parser :> PARSER = struct … … val tpInt = Token.litWord “int” val tpBool = Token.litWord “bool” val LPAREN = Token.litWord “(“ val RPAREN = Token.litWord “)” val ARROW = Token.litWord “->” fun tp () = $tp0 && $tp’ wth (fn (t, k) => k(t)) and tp’ () = ARROW >> $tp wth fn t => (fn t’ => TpFun (t’, t)) || succeed (fn t => t) and tp0 () = tpInt return TpInt || tpBool return TpBool || LPAREN >> $tp << RPAREN … …end BU CAS CS520

  15. Try it yourself! • A parser for untyped l-calculus implemented using parsing combinators can be found on the course’s homepage • Also, some helpful material can be found in Lawrence Paulson’s book on ML; or read a paper by Hutton • Try it yourself and ask questions! BU CAS CS520

More Related