1 / 28

Aquaculture of Fishes Biology of Fishes 11.6.12

Aquaculture of Fishes Biology of Fishes 11.6.12. Overview. Presentation Guidelines Syllabus Revisions Guest Lecture 2 – Dr. Charles Madenjian – USGS Great Lakes Science Center Aquaculture – related to fish ecology & diversity. Presentation Guidelines. Guidelines online

aricin
Download Presentation

Aquaculture of Fishes Biology of Fishes 11.6.12

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Aquaculture of FishesBiology of Fishes11.6.12

  2. Overview Presentation Guidelines Syllabus Revisions Guest Lecture 2 – Dr. Charles Madenjian – USGS Great Lakes Science Center Aquaculture – related to fish ecology & diversity

  3. Presentation Guidelines Guidelines online All groups submit written reports 11.27.2012 Attendance required at all student presentations Student Presentations material will be on Final Exam

  4. Syllabus Revisions November 13 – Biogeography, conservation, genetics November 15 – Conservation ecology case study synthesis November 20 – Exam 2 November 22 – Thanksgiving Break November 27 – Student Presentations November 29 – Guest Lecture 3 December 4, 6, 11 – Student Presentations

  5. Guest Lecture 2 Dr. Charles Madenjian– USGS Great Lakes Science Center Dynamics of the Lake Michigan Food Web 1979-2000 Assignment Part 1 hard copy due at start of class

  6. Aquaculture • Aquaculture – the farming of aquatic organisms under controlled conditions (fishes, crustaceans, mollusks, aquatics plants, etc). • Farming of fishes is the most common form (what we will focus on). • 2 Primary categories we will focus on (often overlap) • Grow-out aquaculture for direct human consumption • Hatchery and stocking operations – release fishes into wild to supplement exploited or declining stocks

  7. Aquaculture • Aquaculture – example types • Mariculture – cultivation of marine organisms in seawater • Polyculture – cultivation of multiple species • Integrated Multi-Trophic Aquaculture – by-products of one species are recycled as inputs for another species

  8. Aquaculture • Aquaculture – example types • Extensive – utilizes cages/pens, but relies on natural food supply • Semi-intensive – feeding supplements or fertilizer to encourage feed production • Intensive – highly subsidized, large inputs of feed; highest yields, but highest ecological impacts

  9. Aquaculture • Aquaculture – the farming of aquatic organisms under controlled conditions • Practiced by humans for thousands of years • 6000 BC Australia – eel culture via landlocked ponds • 2500 BC China – carp aquaculture • 1000 years ago in Hawaii – oceanic ponds

  10. Aquaculture Global harvest of aquatic organisms in million tons, 1950–2010, (Food & Agriculture Organization of UN)

  11. Aquaculture • Fisheries provide 16-19% of human animal protein consumption • ~1 billion people rely on fish for most of their protein (especially in developing nations) • Increased pressure on fisheries with increasing population • Wild supply/CPUE leveled off at 90 MMT in late 1980s • Yields increased in recent years to 120 MMT largely due to aquaculture • Aquaculture expanded from 5 MMT (1950) to 30 MMT (1990s) • Aquaculture will be needed, but can it be done sustainably?

  12. Aquaculture • Pros • Economically important • Access to animal protein • Relieve pressure of overfishing • Restocking wild populations, conservation (captive propagation) • Cons • Ecological efficiency (lack thereof) • Pollution (disease, parasites, nutrient loading) • Escapes

  13. Genetically Modified Organisms (GMOs) Usually done to enhance growth rate Highly debated, lack of solid research Growth hormones Antifreeze genes

  14. Genetically Modified Organisms (GMOs) • Pros • Increased growth & feeding efficiency (market size faster) • tilapia +60-80% faster growth, 2.9x feed conversion, 3.6x less food • Chinook salmon – 10-30x growth rate w/ hormone & antifreeze genes • Increased disease resistance • Potential health benefits (lower cholesterol)

  15. Genetically Modified Organisms (GMOs) • Cons • Deformities • Non-adaptive characteristics (feeding behavior, swimming ability) • Perceived potential health hazards (not well-supported*)

  16. Aquaculture • Example species/systems • Atlantic salmon – sea ranching • Bluefin tuna – sea ranching • Tilapia – intensive aquaculture • Carps – polyculture • Air-breathing fishes – sustainable aquaculture

  17. Aquaculture “Sea Ranching” - process of growing out salmon in net pens until market size. Atlantic salmon (Salmosalar) most common species International scale practice (Norway, Chile, Canada = ~85% production in 2005) 1.3 million metric tons (2005), 90% S. salar; $4-5 billion USD Pros: increased economic activity; healthy animal protein at reasonable price; pressure off wild stocks Cons: low ecological efficiency, 2.5 kg fishmeal: 1 kg salmon

  18. Sea Ranching • Cons • Low ecological efficiency • Socioeconomic hardships (compare to wild-stock fisheries) • Pollution (high density – high waste, nutrient pollution, organic sewage of 40 salmon ~ 1 person) • Parasites, disease, antibiotics, pesticides (although debatable in some comparisons to wild fish) • Escapes (disease, hybridization, competition)

  19. Sea Ranching Cons

  20. Aquaculture • Bluefin tuna (Thunnusthynnus) • Very early stages, minimal success • Large species, special requirements • May contribute to current overfishing • Valuable species ($396,000 for one fish)

  21. Aquaculture Bluefin tuna (Thunnusthynnus)

  22. Aquaculture Tilapia (Oreochromis spp.)

  23. Aquaculture • Carps (various cyprinid species), commonly polycultured • Grass, silver, bighead, common carps • Cultured primarily in Asia • Introduced in US and elsewhere

  24. Aquaculture • Air-breathing fishes – several species (Channa, Clarias, Osphronemus, Arapaima, Protopterus, Atractosteus) • Numerous advantages over other fishes

  25. Aquaculture • Air-breathing fishes – several species (Channa, Clarias, Osphronemus, Arapaima, Protopterus, Atractosteus) • Numerous advantages over other fishes • Tolerant of lower water quality (conducive to high-density culture) • Lower technology required for culture • Most species exhibit rapid growth and readily accept artificial feed • May be more adaptive options for culture in the face of climate change

  26. Air-breathing Fishes

  27. Air-breathing Fishes

  28. Aquaculture Will likely be a necessity to meet future fish & seafood supply and demand Sustainable practices necessary to reduce negative impacts High economic potential Much further research is necessary

More Related