1 / 47

Semantic Infrastructure Workshop Applications

Semantic Infrastructure Workshop Applications. Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services http://www.kapsgroup.com. Agenda. Search and Semantic Infrastructure Elements /Rich Dynamic Results Different Environments Design Issues

aricin
Download Presentation

Semantic Infrastructure Workshop Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semantic Infrastructure Workshop Applications Tom ReamyChief Knowledge Architect KAPS Group Knowledge Architecture Professional Services http://www.kapsgroup.com

  2. Agenda • Search and Semantic Infrastructure • Elements /Rich Dynamic Results • Different Environments • Design Issues • Platform for Information Applications • Multiple Applications • Case Study – Categorization & Sentiment • Case Study – Taxonomy Development • Case Study – Expertise & Sentiment & Beyond • Conclusions

  3. A Semantic Infrastructure Approach to SearchElements • Multiple Knowledge Structures • Facet – orthogonal dimension of metadata • Taxonomy - Subject matter / aboutness • Ontology – Relationships / Facts • Subject – Verb - Object • Software - Search, ECM, auto-categorization, entity extraction, Text Analytics and Text Mining • People – tagging, evaluating tags, fine tune rules and taxonomy • People – Users, social tagging, suggestions • Rich Search Results – context and conversation

  4. A Semantic Infrastructure Approach to Search:Rich Results • Elements • Faceted Navigation • Categorization – metadata and/or dynamic • Tag Clouds – clustering • User Tags, personalization • Related topics – discovery • Supports all manner of search behaviors and needs • Find known items – zero in with facets • Discovery – Tags clouds, user tags, related topics • Deep dive - categorization

  5. A Semantic Infrastructure Approach to Search: Three Environments • E-Commerce • Catalogs, small uniform collections of entities • Conflict of information and Selling • Uniform behavior – buy this • Enterprise • More content, more types of content • Enterprise Tools – Search, ECM • Publishing Process – tagging, metadata standards • Internet • Wildly different amount and type of content, no taggers • General Purpose – Flickr, Yahoo • Vertical Portal – selected content, no taggers

  6. A Semantic Infrastructure Approach to Search: Enterprise Environment –Taxonomy, 7 facets • Taxonomy of Subjects / Disciplines: • Science > Marine Science > Marine microbiology > Marine toxins • Facets: • Organization > Division > Group • Clients > Federal > EPA • Instruments > Environmental Testing > Ocean Analysis > Vehicle • Facilities > Division > Location > Building X • Methods > Social > Population Study • Materials > Compounds > Chemicals • Content Type – Knowledge Asset > Proposals

  7. A Semantic Infrastructure Approach to Search: Internet Design • Subject Matter taxonomy – Business Topics • Finance > Currency > Exchange Rates • Facets • Location > Western World > United States • People – Alphabetical and/or Topical - Organization • Organization > Corporation > Car Manufacturing > Ford • Date – Absolute or range (1-1-01 to 1-1-08, last 30 days) • Publisher – Alphabetical and/or Topical – Organization • Content Type – list – newspapers, financial reports, etc.

  8. Rich Search ResultsDesign Issues - General • What is the right combination of elements? • Faceted navigation, metadata, browse, search, categorized search results, file plan • What is the right balance of elements? • Dominant dimension or equal facets • Browse topics and filter by facet • When to combine search, topics, and facets? • Search first and then filter by topics / facet • Browse/facet front end with a search box

  9. Rich Search ResultsDesign Issues - General • Homogeneity of Audience and Content • Model of the Domain – broad • How many facets do you need? • More facets and let users decide • Allow for customization – can’t define a single set • User Analysis – tasks, labeling, communities • Issue – labels that people use to describe their business and label that they use to find information • Match the structure to domain and task • Users can understand different structures

  10. Rich Search ResultsAutomatic Facets – Special Issues • Scale requires more automated solutions • More sophisticated rules • Rules to find and populate existing metadata • Variety of types of existing metadata – Publisher, title, date • Multiple implementation Standards – Last Name, First / First Name, Last • Issue of disambiguation: • Same person, different name – Henry Ford, Mr. Ford, Henry X. Ford • Same word, different entity – Ford and Ford • Number of entities and thresholds per results set / document • Usability, audience needs • Relevance Ranking – number of entities, rank of facets

  11. Semantic Infrastructure for Search Based AppsMultiple Applications • Platform for Information Applications • Content Aggregation • Duplicate Documents – save millions! • Text Mining – BI, CI – sentiment analysis • Combine with Data Mining – disease symptoms, new • Predictive Analytics • Social – Hybrid folksonomy / taxonomy / auto-metadata • Social – expertise, categorize tweets and blogs, reputation • Ontology – travel assistant – SIRI • Use your Imagination!

  12. Semantic Infrastructure for Search AppsMultiple Applications • SIRI – Travel Assistant

  13. Semantic Infrastructure for Search Apps Case Study – Categorization & Sentiment • Call Motivation • Categorization – Motivation Taxonomy • Purpose of previous calls to understand current call • Issues of scale, small size of documents, jargon, spelling • Customer Sentiment • Telecom Forums • Feature level – not just products • Issue of context - sarcasm, jargon • Knowledge Base • Categorization, Product extraction, expertise-sentiment analysis • Social Media as source for solutions

  14. Case Study – Categorization & Sentiment

  15. Case Study – Categorization & Sentiment

  16. Sentiment AnalysisDevelopment Process • Combination of Statistical and categorization rules • Start with Training sets – examples of positive, negative, neutral documents • Develop a Statistical Model • Generate domain positive and negative words and phrases • Develop a taxonomy of Products & Features • Develop rules for positive and negative statements • Test and Refine • Test and Refine again

  17. Semantic Infrastructure for Search Apps Case Study – Taxonomy Development Problem – 200,000 new uncategorized documents Old taxonomy –need one that reflects change in corpus Text mining, entity extraction, categorization Content – 250,000 large documents, search logs, etc. Bottom Up- terms in documents – frequency, date, Clustering – suggested categories Clustering – chunking for editors Entity Extraction – people, organizations, Programming languages Time savings – only feasible way to scan documents Quality – important terms, co-occurring terms

  18. Case Study – Taxonomy Development

  19. Case Study – Taxonomy Development

  20. Case Study – Taxonomy Development

  21. Semantic Infrastructure ApplicationsExpertise Analysis • Sentiment Analysis to Expertise Analysis(KnowHow) • Know How, skills, “tacit” knowledge • No single correct categorization • Women, Fire, and Dangerous Things • Types of Animals • Those that belong to the Emperor • Embalmed Ones • Suckling Pigs • Fabulous Ones • Those that are included in this classification • Those that tremble as if they were mad • Other

  22. Semantic Infrastructure ApplicationsExpertise Analysis – Basic Level Categories • Mid-level in a taxonomy / hierarchy • Short and easy words • Maximum distinctness and expressiveness • First level named and understood by children • Level at which most of our knowledge is organized • Levels: Superordinate – Basic – Subordinate • Mammal – Dog – Golden Retriever • Furniture – chair – kitchen chair

  23. Semantic Infrastructure ApplicationsExpertise Analysis • Experts prefer lower, subordinate levels • In their domain, (almost) never used superordinate • Novice prefer higher, superordinate levels • General Populace prefers basic level • Not just individuals but whole societies / communities differ in their preferred levels • Issue – artificial languages – ex. Science discipline • Issue – difference of child and adult learning – adults start with high level

  24. Semantic Infrastructure ApplicationsExpertise Analysis • What is basic level is context(s) dependent • Document/author expert in news health care, not research • Hybrid – simple high level taxonomy (superordinate), short words – basic, longer words – expert Plus • Develop expertise rules – similar to categorization rules • Use basic level for subject • Superordinate for general, subordinate for expert • Also contextual rules • “Tests” is general, high level • “Predictive value of tests” is lower, more expert • If terms appear in same sentence - expert

  25. Education Terms

  26. Healthcare Terms

  27. Expertise Analysis Expertise – application areas • Taxonomy / Ontology development /design – audience focus • Card sorting – non-experts use superficial similarities • Business & Customer intelligence – add expertise to sentiment • Deeper research into communities, customers • Text Mining - Expertise characterization of writer, corpus • eCommerce – Organization/Presentation of information – expert, novice • Expertise location- Generate automatic expertise characterization based on documents • Experiments - Pronoun Analysis – personality types • Essay Evaluation Software - Apply to expertise characterization • Model levels of chunking, procedure words over content

  28. Beyond Sentiment: Behavior PredictionCase Study – Telecom Customer Service • Problem – distinguish customers likely to cancel from mere threats • Analyze customer support notes • General issues – creative spelling, second hand reports • Develop categorization rules • First – distinguish cancellation calls – not simple • Second - distinguish cancel what – one line or all • Third – distinguish real threats

  29. Beyond SentimentBehavior Prediction – Case Study • Basic Rule • (START_20, (AND, • (DIST_7,"[cancel]", "[cancel-what-cust]"), • (NOT,(DIST_10, "[cancel]", (OR, "[one-line]", "[restore]", “[if]”))))) • Examples: • customer called to say he will cancell his account if the does not stop receiving a call from the ad agency. • cci and is upset that he has the asl charge and wants it offor her is going to cancel his act • ask about the contract expiration date as she wanted to cxltehacct Combine sophisticated rules with sentiment statistical training and Predictive Analytics

  30. Beyond Sentiment - Wisdom of CrowdsCrowd Sourcing Technical Support • Example – Android User Forum • Develop a taxonomy of products, features, problem areas • Develop Categorization Rules: • “I use the SDK method and it isn't to bad a all. I'll get some pics up later, I am still trying to get the time to update from fresh 1.0 to 1.1.” • Find product & feature – forum structure • Find problem areas in response, nearby text for solution • Automatic – simply expose lists of “solutions” • Search Based application • Human mediated – experts scan and clean up solutions

  31. Semantic Infrastructure: A Platform for KM Applications • Expertise Location – Individuals and Communities • Knowledge Sharing – Com. Of Practice • Find right person better • Knowledge representation to support better sharing • Enhance sharing as well as sub for person • Knowledge Base // Portal • Greatly improved – find what you are looking for • New kinds of presentations – rich search to dynamic graphs • Process – deliver rich K representation in work flow – SIRI+

  32. Text Analytics: Future Directions • Start with the 80% of significant content that is not data • Enterprise search, content management, Search based applications • Text Analytics and Text Mining • Text Analytics turns text into data – Build better TM Apps • Better extraction and add Subject / Concepts • Sentiment and Beyond – Behavior, Expertise • Text Mining and Text Analytics • TM enriching TA • Taxonomy development • New Content Structures, ensemble models • Text Analytics and Predictive Analytics • More content, New content – social, interactive – CSR • New sources of content/data = new & better apps

  33. Semantic Infrastructure ApproachConclusions • Semantic Infrastructure solution (people, policy, technology, semantics) and feedback is best approach • Foundation – Hybrid ECM model with text analytics, Search • Integrated information, knowledge, and semantics • Semantic Infrastructure as a platform for multiple applications • Build on infrastructure for economy and quality • Text Analytics (Entity extraction and auto-categorization, sentiment analysis) are essential • Future – new kinds of applications: • Text Mining and Data mining, research tools, sentiment • Beyond Sentiment – expertise applications • NeuroAnalytics – cognitive science meets search and more • Watson is just the start

  34. Questions? Tom Reamytomr@kapsgroup.com KAPS Group Knowledge Architecture Professional Services http://www.kapsgroup.com

  35. Resources • Books • Women, Fire, and Dangerous Things • George Lakoff • Knowledge, Concepts, and Categories • Koen Lamberts and David Shanks • Formal Approaches in Categorization • Ed. Emmanuel Pothos and Andy Wills • The Mind • Ed John Brockman • Good introduction to a variety of cognitive science theories, issues, and new ideas • Any cognitive science book written after 2009

  36. Resources • Conferences – Web Sites • Text Analytics World • http://www.textanalyticsworld.com • Text Analytics Summit • http://www.textanalyticsnews.com • Semtech • http://www.semanticweb.com

  37. Resources • Blogs • SAS- http://blogs.sas.com/text-mining/ • Web Sites • Taxonomy Community of Practice: http://finance.groups.yahoo.com/group/TaxoCoP/ • LindedIn – Text Analytics Summit Group • http://www.LinkedIn.com • Whitepaper – CM and Text Analytics - http://www.textanalyticsnews.com/usa/contentmanagementmeetstextanalytics.pdf • Whitepaper – Enterprise Content Categorization strategy and development – http://www.kapsgroup.com

  38. Resources • Articles • Malt, B. C. 1995. Category coherence in cross-cultural perspective. Cognitive Psychology 29, 85-148 • Rifkin, A. 1985. Evidence for a basic level in event taxonomies. Memory & Cognition 13, 538-56 • Shaver, P., J. Schwarz, D. Kirson, D. O’Conner 1987. Emotion Knowledge: further explorations of prototype approach. Journal of Personality and Social Psychology 52, 1061-1086 • Tanaka, J. W. & M. E. Taylor 1991. Object categories and expertise: is the basic level in the eye of the beholder? Cognitive Psychology 23, 457-82

More Related